Research Article
No access
Published Online: 29 December 2011

A Microfabricated Platform to Measure and Manipulate the Mechanics of Engineered Cardiac Microtissues

Publication: Tissue Engineering Part A
Volume 18, Issue Number 9-10

Abstract

Engineered myocardial tissues can be used to elucidate fundamental features of myocardial biology, develop organotypic in vitro model systems, and as engineered tissue constructs for replacing damaged heart tissue in vivo. However, a key limitation is an inability to test the wide range of parameters (cell source, mechanical, soluble and electrical stimuli) that might impact the engineered tissue in a high-throughput manner and in an environment that mimics native heart tissue. Here we used microelectromechanical systems technology to generate arrays of cardiac microtissues (CMTs) embedded within three-dimensional micropatterned matrices. Microcantilevers simultaneously constrain CMT contraction and report forces generated by the CMTs in real time. We demonstrate the ability to routinely produce ∼200 CMTs per million cardiac cells (<1 neonatal rat heart) whose spontaneous contraction frequency, duration, and forces can be tracked. Independently varying the mechanical stiffness of the cantilevers and collagen matrix revealed that both the dynamic force of cardiac contraction as well as the basal static tension within the CMT increased with boundary or matrix rigidity. Cell alignment is, however, reduced within a stiff collagen matrix; therefore, despite producing higher force, CMTs constructed from higher density collagen have a lower cross-sectional stress than those constructed from lower density collagen. We also study the effect of electrical stimulation on cell alignment and force generation within CMTs and we show that the combination of electrical stimulation and auxotonic load strongly improves both the structure and the function of the CMTs. Finally, we demonstrate the suitability of our technique for high-throughput monitoring of drug-induced changes in spontaneous frequency or contractility in CMTs as well as high-speed imaging of calcium dynamics using fluorescent dyes. Together, these results highlight the potential for this approach to quantitatively demonstrate the impact of physical parameters on the maturation, structure, and function of cardiac tissue and open the possibility to use high-throughput, low volume screening for studies on engineered myocardium.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Mathers C.D.Bernard C.Iburg K.M.Inoue M.Ma Fat D.Shibuya K.Stein C.Tomijima N.Xu H.Global Burden of Disease: Data Sources, Methods and ResultsWorld Health OrganizationGeneva, Switzerland2008. 1. Mathers, C.D., Bernard, C., Iburg, K.M., Inoue, M., Ma Fat, D., Shibuya, K., Stein, C., Tomijima, N., and Xu, H. Global Burden of Disease: Data Sources, Methods and Results. World Health Organization, Geneva, Switzerland, 2008.
2.
Eschenhagen T.Zimmermann W.H. Engineering myocardial tissueCirc Res9712202005. 2. Eschenhagen, T., and Zimmermann, W.H. Engineering myocardial tissue. Circ Res 97, 1220, 2005.
3.
Carrier R.L.Papadaki M.Rupnick M.Schoen F.J.Bursac N.Langer R.Freed L.E.Vunjak-Novakovic G. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterizationBiotechnol Bioeng645801999. 3. Carrier, R.L., Papadaki, M., Rupnick, M., Schoen, F.J., Bursac, N., Langer, R., Freed, L.E., and Vunjak-Novakovic, G. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 64, 580, 1999.
4.
van Luyn M.J.A.Tio R.A.Gallego y van Seijen X.J.Plantinga J.A.de Leij L.F.M.H.DeJongste M.J.L.van Wachem P.B. Cardiac tissue engineering: characteristics of in unison contracting two- and three-dimensional neonatal rat ventricle cell (co)-culturesBiomaterials2347932002. 4. van Luyn, M.J.A., Tio, R.A., Gallego y van Seijen, X.J., Plantinga, J.A., de Leij, L.F.M.H., DeJongste, M.J.L., and van Wachem, P.B. Cardiac tissue engineering: characteristics of in unison contracting two- and three-dimensional neonatal rat ventricle cell (co)-cultures. Biomaterials 23, 4793, 2002.
5.
Hansen A.Eder A.Bonstrup M.Flato M.Mewe M.Schaaf S.Aksehirlioglu B.Schworer A.Uebeler J.Eschenhagen T. Development of a drug screening platform based on engineered heartTissue Circ Res107352010. 5. Hansen, A., Eder, A., Bonstrup, M., Flato, M., Mewe, M., Schaaf, S., Aksehirlioglu, B., Schworer, A., Uebeler, J., and Eschenhagen, T. Development of a drug screening platform based on engineered heart. Tissue Circ Res 107, 35, 2010.
6.
Kofidis T.Akhyari P.Boublik J.Theodorou P.Martin U.Ruhparwar A.Fischer S.Eschenhagen T.Kubis H.P.Kraft T.Leyh R.Haverich A. In vitro engineering of heart muscle: artificial myocardial tissueJ Thorac Cardiovasc Surg124632002. 6. Kofidis, T., Akhyari, P., Boublik, J., Theodorou, P., Martin, U., Ruhparwar, A., Fischer, S., Eschenhagen, T., Kubis, H.P., Kraft, T., Leyh, R., and Haverich, A. In vitro engineering of heart muscle: artificial myocardial tissue. J Thorac Cardiovasc Surg 124, 63, 2002.
7.
Radisic M.Park H.Gerecht S.Cannizzaro C.Langer R.Vunjak-Novakovic G. Biomimetic approach to cardiac tissue engineeringPhilos Trans R Soc B36213572007. 7. Radisic, M., Park, H., Gerecht, S., Cannizzaro, C., Langer, R., and Vunjak-Novakovic, G. Biomimetic approach to cardiac tissue engineering. Philos Trans R Soc B 362, 1357, 2007.
8.
Li R.-K.Jia Z.-Q.Weisel R.D.Mickle D.A.G.Choi A.Yau T.M. Survival and function of bioengineered cardiac graftsCirculation10019 SupplII631999. 8. Li, R.-K., Jia, Z.-Q., Weisel, R.D., Mickle, D.A.G., Choi, A., and Yau, T.M. Survival and function of bioengineered cardiac grafts. Circulation 100(19 Suppl), II63, 1999.
9.
Leor J.Aboulafia-Etzion S.Dar A.Shapiro L.Barbash I.M.Battler A.Granot Y.Cohen S. Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium?Circulation10219 Suppl 3III562000. 9. Leor, J., Aboulafia-Etzion, S., Dar, A., Shapiro, L., Barbash, I.M., Battler, A., Granot, Y., and Cohen, S. Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102(19 Suppl 3), III56, 2000.
10.
Zimmermann W.-H.Melnychenko I.Wasmeier G.Didie M.Naito H.Nixdorff U.Hess A.Budinsky L.Brune K.Michaelis B.Dhein S.Schwoerer A.Ehmke H.Eschenhagen T. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat heartsNat Med124522006. 10. Zimmermann, W.-H., Melnychenko, I., Wasmeier, G., Didie, M., Naito, H., Nixdorff, U., Hess, A., Budinsky, L., Brune, K., Michaelis, B., Dhein, S., Schwoerer, A., Ehmke, H., and Eschenhagen, T. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12, 452, 2006.
11.
Shimizu T.Yamato M.Isoi Y.Akutsu T.Setomaru T.Abe K.Kikuchi A.Umezu M.Okano T. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfacesCirc Res90e402002. 11. Shimizu, T., Yamato, M., Isoi, Y., Akutsu, T., Setomaru, T., Abe, K., Kikuchi, A., Umezu, M., and Okano, T. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90, e40, 2002.
12.
Kehat I.Kenyagin-Karsenti D.Snir M.Segev H.Amit M.Gepstein A.Livne E.Binah O.Itskovitz-Eldor J.Gepstein L. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytesJ Clin Invest1084072001. 12. Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J., and Gepstein, L. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108, 407, 2001.
13.
Niebruegge S.Bauwens C.L.Peerani R.Thavandiran N.Masse S.Sevaptisidis E.Nanthakumar K.Woodhouse K.Husain M.Kumacheva E.Zandstra P.W. Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactorBiotechnol Bioeng1024932009. 13. Niebruegge, S., Bauwens, C.L., Peerani, R., Thavandiran, N., Masse, S., Sevaptisidis, E., Nanthakumar, K., Woodhouse, K., Husain, M., Kumacheva, E., and Zandstra, P.W. Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor. Biotechnol Bioeng 102, 493, 2009.
14.
Kattman S.J.Witty A.D.Gagliardi M.Dubois N.C.Niapour M.Hotta A.Ellis J.Keller G. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell linesCell Stem Cell82282011. 14. Kattman, S.J., Witty, A.D., Gagliardi, M., Dubois, N.C., Niapour, M., Hotta, A., Ellis, J., and Keller, G. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8, 228, 2011.
15.
Zhang J.Wilson G.F.Soerens A.G.Koonce C.H.Yu J.Palecek S.P.Thomson J.A.Kamp T.J. Functional cardiomyocytes derived from human induced pluripotent stem cellsCirc Res104e302009. 15. Zhang, J., Wilson, G.F., Soerens, A.G., Koonce, C.H., Yu, J., Palecek, S.P., Thomson, J.A., and Kamp, T.J. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104, e30, 2009.
16.
Burridge P.W.Thompson S.Millrod M.A.Weinberg S.Yuan X.Peters A.Mahairaki V.Koliatsos V.E.Tung L.Zambidis E.T. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variabilityPlos One6e182932011. 16. Burridge, P.W., Thompson, S., Millrod, M.A., Weinberg, S., Yuan, X., Peters, A., Mahairaki, V., Koliatsos, V.E., Tung, L., and Zambidis, E.T. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. Plos One 6, e18293, 2011.
17.
Ieda M.Fu J.-D.Delgado-Olguin P.Vedantham V.Hayashi Y.Bruneau B.G.Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factorsCell1423752010. 17. Ieda, M., Fu, J.-D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B.G., and Srivastava, D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375, 2010.
18.
Zimmermann W.-H. Embryonic and embryonic-like stem cells in heart muscle engineeringJ Mol Cell Cardiol503202011. 18. Zimmermann, W.-H. Embryonic and embryonic-like stem cells in heart muscle engineering. J Mol Cell Cardiol 50, 320, 2011.
19.
Sturzu A.C.Wu S.M. Developmental and regenerative biology of multipotent cardiovascular progenitor cellsCirc Res1083532011. 19. Sturzu, A.C., and Wu, S.M. Developmental and regenerative biology of multipotent cardiovascular progenitor cells. Circ Res 108, 353, 2011.
20.
Tandon N.Cannizzaro C.Chao P.-H.G.Maidhof R.Marsano A.Au H.T.H.Radisic M.Vunjak-Novakovic G. Electrical stimulation systems for cardiac tissue engineeringNat Protoc41552009. 20. Tandon, N., Cannizzaro, C., Chao, P.-H.G., Maidhof, R., Marsano, A., Au, H.T.H., Radisic, M., and Vunjak-Novakovic, G. Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 4, 155, 2009.
21.
Radisic M.Park H.Shing H.Consi T.Schoen F.J.Langer R.Freed L.E.Vunjak-Novakovic G. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffoldsProc Natl Acad Sci U S A101181292004. 21. Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F.J., Langer, R., Freed, L.E., and Vunjak-Novakovic, G. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A 101, 18129, 2004.
22.
Chiu L.L.Y.Iyer R.K.King J.-P.Radisic M. Biphasic electrical field stimulation aids in tissue engineering of multicell-type cardiac organoidsTissue Eng A1714652011. 22. Chiu, L.L.Y., Iyer, R.K., King, J.-P., and Radisic, M. Biphasic electrical field stimulation aids in tissue engineering of multicell-type cardiac organoids. Tissue Eng A 17, 1465, 2011.
23.
Zimmermann W.-H.Schneiderbanger K.Schubert P.Didie M.Munzel F.Heubach J.F.Kostin S.Neuhuber W.L.Eschenhagen T. Tissue engineering of a differentiated cardiac muscle constructCirc Res902232002. 23. Zimmermann, W.-H., Schneiderbanger, K., Schubert, P., Didie, M., Munzel, F., Heubach, J.F., Kostin, S., Neuhuber, W.L., and Eschenhagen, T. Tissue engineering of a differentiated cardiac muscle construct. Circ Res 90, 223, 2002.
24.
Fink C.Ergün S.Kralisch D.Remmers U.Weil J.Eschenhagen T. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvementFASEB J146692000. 24. Fink, C., Ergün, S., Kralisch, D., Remmers, U., Weil, J., and Eschenhagen, T. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J 14, 669, 2000.
25.
Narmoneva D.A.Vukmirovic R.Davis M.E.Kamm R.D.Lee R.T. Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regenerationCirculation1109622004. 25. Narmoneva, D.A., Vukmirovic, R., Davis, M.E., Kamm, R.D., and Lee, R.T. Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation 110, 962, 2004.
26.
Radisic M.Park H.Martens T.P.Salazar-Lazaro J.E.Geng W.Wang Y.Langer R.Freed L.E.Vunjak-Novakovic G. Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissueJ Biomed Mater Res A867132008. 26. Radisic, M., Park, H., Martens, T.P., Salazar-Lazaro, J.E., Geng, W., Wang, Y., Langer, R., Freed, L.E., and Vunjak-Novakovic, G. Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J Biomed Mater Res A 86, 713, 2008.
27.
Legant W.R.Pathak A.Yang M.T.Deshpande V.S.McMeeking R.M.Chen C.S. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissuesProc Natl Acad Sci U S A106100972009. 27. Legant, W.R., Pathak, A., Yang, M.T., Deshpande, V.S., McMeeking, R.M., and Chen, C.S. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc Natl Acad Sci U S A 106, 10097, 2009.
28.
Radisic M.Euloth M.Yang L.Langer R.Freed L.E.Vunjak-Novakovic G. High-density seeding of myocyte cells for cardiac tissue engineeringBiotechnol Bioeng824032003. 28. Radisic, M., Euloth, M., Yang, L., Langer, R., Freed, L.E., and Vunjak-Novakovic, G. High-density seeding of myocyte cells for cardiac tissue engineering. Biotechnol Bioeng 82, 403, 2003.
29.
Tan J.L.Tien J.Pirone D.M.Gray D.S.Bhadriraju K.Chen C.S. Cells lying on a bed of microneedles: an approach to isolate mechanical forceProc Natl Acad Sci U S A10014842003. 29. Tan, J.L., Tien, J., Pirone, D.M., Gray, D.S., Bhadriraju, K., and Chen, C.S. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A 100, 1484, 2003.
30.
Klotzsch E.Smith M.L.Kubow K.E.Muntwyler S.Little W.C.Beyeler F.Gourdon D.Nelson B.J.Vogel V. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sitesProc Natl Acad Sci U S A106182672009. 30. Klotzsch, E., Smith, M.L., Kubow, K.E., Muntwyler, S., Little, W.C., Beyeler, F., Gourdon, D., Nelson, B.J., and Vogel, V. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc Natl Acad Sci U S A 106, 18267, 2009.
31.
Sage D.Neumann F.R.Hediger F.Gasser S.M.Unser M. Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamicsIEEE Trans Image Process1413722005. 31. Sage, D., Neumann, F.R., Hediger, F., Gasser, S.M., and Unser, M. Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans Image Process 14, 1372, 2005.
32.
Smotherman W.P.Robinson S.R.Ronca A.E.Alberts J.R.Hepper P.G. Heart rate response of the rat fetus and neonate to a chemosensory stimulusPhysiol Behav50471991. 32. Smotherman, W.P., Robinson, S.R., Ronca, A.E., Alberts, J.R., and Hepper, P.G. Heart rate response of the rat fetus and neonate to a chemosensory stimulus. Physiol Behav 50, 47, 1991.
33.
Zimmermann W.H.Fink C.Kralisch D.Remmers U.Weil J.Eschenhagen T. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytesBiotechnol Bioeng681062000. 33. Zimmermann, W.H., Fink, C., Kralisch, D., Remmers, U., Weil, J., and Eschenhagen, T. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 68, 106, 2000.
34.
Naito H.Melnychenko I.Didie M.Schneiderbanger K.Schubert P.Rosenkranz S.Eschenhagen T.Zimmermann W.-H. Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscleCirculation1141 Suppl1722006. 34. Naito, H., Melnychenko, I., Didie, M., Schneiderbanger, K., Schubert, P., Rosenkranz, S., Eschenhagen, T., and Zimmermann, W.-H. Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation 114(1 Suppl), 172, 2006.
35.
Hasenfuss G.Mulieri L.Blanchard E.Holubarsch C.Leavitt B.Ittleman F.Alpert N. Energetics of isometric force development in control and volume- overload human myocardium. Comparison with animal speciesCirc Res688361991. 35. Hasenfuss, G., Mulieri, L., Blanchard, E., Holubarsch, C., Leavitt, B., Ittleman, F., and Alpert, N. Energetics of isometric force development in control and volume- overload human myocardium. Comparison with animal species. Circ Res 68, 836, 1991.
36.
Lorenzen-Schmidt I.Schmid-Schönbein G.Giles W.McCulloch A.Chien S.Omens J. Chronotropic response of cultured neonatal rat ventricular myocytes to short-term fluid shearCell Biochem Biophys461132006. 36. Lorenzen-Schmidt, I., Schmid-Schönbein, G., Giles, W., McCulloch, A., Chien, S., and Omens, J. Chronotropic response of cultured neonatal rat ventricular myocytes to short-term fluid shear. Cell Biochem Biophys 46, 113, 2006.
37.
Schubert B.Vandongen A.M.Kirsch G.E.Brown A.M. Inhibition of cardiac Na+ currents by isoproterenolAm J Physiol Heart Circ Physiol2584 Pt 2H9771990. 37. Schubert, B., Vandongen, A.M., Kirsch, G.E., and Brown, A.M. Inhibition of cardiac Na+ currents by isoproterenol. Am J Physiol Heart Circ Physiol 258(4 Pt 2), H977, 1990.
38.
Akera T.Larsen F.S.Brody T.M. Correlation of cardiac sodium- and potassium-activated adenosine triphosphatase activity with ouaibain-induced inotropic stimulationJ Pharmacol Exp Ther1731451970. 38. Akera, T., Larsen, F.S., and Brody, T.M. Correlation of cardiac sodium- and potassium-activated adenosine triphosphatase activity with ouaibain-induced inotropic stimulation. J Pharmacol Exp Ther 173, 145, 1970.
39.
Gadsby D.C.Kimura J.Noma A. Voltage dependence of Na/K pump current in isolated heart cellsNature315631985. 39. Gadsby, D.C., Kimura, J., and Noma, A. Voltage dependence of Na/K pump current in isolated heart cells. Nature 315, 63, 1985.
40.
McGarry S.J.Williams A.J. Digoxin activates sarcoplasmic reticulum Ca(2+)-release channels: a possible role in cardiac inotropyBr J Pharmacol10810431993. 40. McGarry, S.J. and Williams, A.J. Digoxin activates sarcoplasmic reticulum Ca(2+)-release channels: a possible role in cardiac inotropy. Br J Pharmacol 108, 1043, 1993.
41.
Ruch S.R.Nishio M.Wasserstrom J.A. Effect of cardiac glycosides on action potential characteristics and contractility in cat ventricular myocytes: role of calcium overloadJ Pharmacol Exp Ther3074192003. 41. Ruch, S.R., Nishio, M., and Wasserstrom, J.A. Effect of cardiac glycosides on action potential characteristics and contractility in cat ventricular myocytes: role of calcium overload. J Pharmacol Exp Ther 307, 419, 2003.
42.
Shapira-Schweitzer K.Seliktar D. Matrix stiffness affects spontaneous contraction of cardiomyocytes cultured within a PEGylated fibrinogen biomaterialActa Biomater3332007. 42. Shapira-Schweitzer, K., and Seliktar, D. Matrix stiffness affects spontaneous contraction of cardiomyocytes cultured within a PEGylated fibrinogen biomaterial. Acta Biomater 3, 33, 2007.
43.
Samuel J.L.Vandenburgh H.H. Mechanically induced orientation of adult rat cardiac myocytes in vitroIn Vitro Cell Dev Biol269051990. 43. Samuel, J.L., and Vandenburgh, H.H. Mechanically induced orientation of adult rat cardiac myocytes in vitro. In Vitro Cell Dev Biol 26, 905, 1990.
44.
Eschenhagen T.Fink C.Remmers U.Scholz H.Wattchow J.Weil J.Zimmermann W.Dohmen H.Schafer H.Bishopric N.Wakatsuki T.Elson E. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model systemFASEB J116831997. 44. Eschenhagen, T., Fink, C., Remmers, U., Scholz, H., Wattchow, J., Weil, J., Zimmermann, W., Dohmen, H., Schafer, H., Bishopric, N., Wakatsuki, T., and Elson, E. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J 11, 683, 1997.
45.
Berry M.F.Engler A.J.Woo Y.J.Pirolli T.J.Bish L.T.Jayasankar V.Morine K.J.Gardner T.J.Discher D.E.Sweeney H.L. Mesenchymal stem cell injection after myocardial infarction improves myocardial complianceAm J Physiol Heart Circ Physiol290H21962006. 45. Berry, M.F., Engler, A.J., Woo, Y.J., Pirolli, T.J., Bish, L.T., Jayasankar, V., Morine, K.J., Gardner, T.J., Discher, D.E., and Sweeney, H.L. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 290, H2196, 2006.
46.
Engler A.J.Carag-Krieger C.Johnson C.P.Raab M.Tang H.-Y.Speicher D.W.Sanger J.W.Sanger J.M.Discher D.E. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beatingJ Cell Sci12137942008. 46. Engler, A.J., Carag-Krieger, C., Johnson, C.P., Raab, M., Tang, H.-Y., Speicher, D.W., Sanger, J.W., Sanger, J.M., and Discher, D.E. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121, 3794, 2008.
47.
Young J.L.Engler A.J. Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitroBiomaterials3210022011. 47. Young, J.L., and Engler, A.J. Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 32, 1002, 2011.
48.
Leone M.Albanèse J.Martin C. Positive inotropic stimulationCurr Opin Crit Care83952002. 48. Leone, M., Albanèse, J., and Martin, C. Positive inotropic stimulation. Curr Opin Crit Care 8, 395, 2002.
49.
Tang L.Gao W.Taylor P.B. Force-frequency response in isoproterenol-induced hypertrophied rat heartEur J Pharmacol3183491996. 49. Tang, L., Gao, W., and Taylor, P.B. Force-frequency response in isoproterenol-induced hypertrophied rat heart. Eur J Pharmacol 318, 349, 1996.
50.
Schouten V.J.A.ter Keurs H.E.D.J. Role of ica and Na+Ca2+ exchange in the force-frequency relationship of rat heart muscleJ Mol Cell Cardiol2310391991. 50. Schouten, V.J.A., and ter Keurs, H.E.D.J. Role of ica and Na+Ca2+ exchange in the force-frequency relationship of rat heart muscle. J Mol Cell Cardiol 23, 1039, 1991.
51.
Borzak S.Murphy S.Marsh J.D. Mechanisms of rate staircase in rat ventricular cellsAm J Physiol Heart Circ Physiol2603 Pt 2H8841991. 51. Borzak, S., Murphy, S., and Marsh, J.D. Mechanisms of rate staircase in rat ventricular cells. Am J Physiol Heart Circ Physiol 260(3 Pt 2), H884, 1991.

Information & Authors

Information

Published In

cover image Tissue Engineering Part A
Tissue Engineering Part A
Volume 18Issue Number 9-10May 2012
Pages: 910 - 919
PubMed: 22092279

History

Published in print: May 2012
Published ahead of print: 4 January 2012
Published online: 29 December 2011
Published ahead of production: 17 November 2011
Accepted: 17 November 2011
Received: 16 June 2011

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Thomas Boudou
Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania.
Wesley R. Legant
Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania.
Anbin Mu
Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania.
Michael A. Borochin
Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania.
Nimalan Thavandiran
Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.
Milica Radisic
Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.
Peter W. Zandstra
Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.
Jonathan A. Epstein
Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania.
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.
Kenneth B. Margulies
Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania.
Christopher S. Chen
Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania.

Notes

Address correspondence to:Christopher S. Chen, M.D., Ph.D.Department of BioengineeringUniversity of Pennsylvania220 S. 33rd St.Skirkanich Hall Ste 510Philadelphia, PA 19104E-mail: [email protected]

Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top