Research Article
No access
Published Online: 18 October 2012

Human Serum is a Suitable Supplement for the Osteogenic Differentiation of Human Adipose-Derived Stem Cells Seeded on Poly-3-Hydroxibutyrate-Co-3-Hydroxyvalerate Scaffolds

Publication: Tissue Engineering Part A
Volume 19, Issue Number 1-2

Abstract

Human adipose-derived stem cells (hASCs) are currently a point of focus for bone tissue engineering applications. However, the ex vivo expansion of stem cells before clinical application remains a challenge. Fetal bovine serum (FBS) is largely used as a medium supplement and exposes the recipient to infections and immunological reactions. In this study, we evaluated the osteogenic differentiation process of hASCs in poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-HV) scaffolds with the osteogenic medium supplemented with pooled allogeneic human serum (aHS). The hASCs grown in the presence of FBS or aHS did not show remarkable differences in morphology or immunophenotype. The PHB-HV scaffolds, which were developed by the freeze-drying technique, showed an adequate porous structure and mechanical performance as observed by micro-computed tomography, scanning electron microscopy (SEM), and compression test. The three-dimensional structure was suitable for allowing cell colonization, which was revealed by SEM micrographs. Moreover, these scaffolds were not toxic to cells as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The differentiation capacity of hASCs seeded on scaffolds was confirmed by the reduction of the proliferation, the alkaline phosphatase (AP) activity, expression of osteogenic gene markers (AP, collagen type I, Runx2, and osteocalcin), and the expression of bone markers, such as osteopontin, osteocalcin, and collagen type I. The osteogenic capacity of hASCs seeded on PHB-HV scaffolds indicates that this scaffold is adequate for cell growth and differentiation and that aHS is a promising supplement for the in vitro expansion of hASCs. In conclusion, this strategy seems to be useful and safe for application in bone tissue engineering.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Dimitriou R.Jones E.McGonagle D.Giannoudis P.V. Bone regeneration: current concepts and future directionsBMC Med9662011. 1. Dimitriou, R., Jones, E., McGonagle, D., and Giannoudis, P.V. Bone regeneration: current concepts and future directions. BMC Med 9, 66, 2011.
2.
Giannoudis P.V.Dinopoulos H.Tsiridis E. Bone substitutes: an updateInjury3S202005. 2. Giannoudis, P.V., Dinopoulos, H., and Tsiridis, E. Bone substitutes: an update. Injury 3, S20, 2005.
3.
St. John T.A.Vaccaro A.R.Sah A.P.Schaefer M.Berta S.C.Albert T.Hilibrand A. Physical and monetary costs associated with autogenous bone graft harvestingAm J Orthop32182003. 3. St. John, T.A., Vaccaro, A.R., Sah, A.P., Schaefer, M., Berta, S.C., Albert, T., and Hilibrand, A. Physical and monetary costs associated with autogenous bone graft harvesting. Am J Orthop 32, 18, 2003.
4.
Langer R.Vacanti J.P. Tissue engineeringScience2609201993. 4. Langer, R., and Vacanti, J.P. Tissue engineering. Science 260, 920, 1993.
5.
Salgado A.J.Coutinho O.P.Reis R.L. Bone tissue engineering: state of the art and future trendsMacromol Biosci47432008. 5. Salgado, A.J., Coutinho, O.P., and Reis, R.L. Bone tissue engineering: state of the art and future trends. Macromol Biosci 4, 743, 2008.
6.
Köse G.T.Kenar H.Hasırcı N.Hasırcı V. Macroporous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for bone tissue engineeringBiomaterials2419492003. 6. Köse, G.T., Kenar, H., Hasırcı, N., and Hasırcı, V. Macroporous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for bone tissue engineering. Biomaterials 24, 1949, 2003.
7.
Köse G.T.Korkusuz F.Korkusuz P.Purali N.Ozkul A.Hasırcı V. Bone generation on PHBV matrices: an in vitro studyBiomaterials2449992003. 7. Köse, G.T., Korkusuz, F., Korkusuz, P., Purali, N., Ozkul, A., and Hasırcı, V. Bone generation on PHBV matrices: an in vitro study. Biomaterials 24, 4999, 2003.
8.
Kumarasuriyar A.Jackson R.A.Grøndahl LTrau M.Nurcombe V.Cool S.M. Poly(β-hydroxybutyrate-co-β-hydroxyvalerate) supports in vitro osteogenesisTissue Eng1112812005. 8. Kumarasuriyar, A., Jackson, R.A., Grøndahl L., Trau, M., Nurcombe, V., and Cool, S.M. Poly(β-hydroxybutyrate-co-β-hydroxyvalerate) supports in vitro osteogenesis. Tissue Eng 11, 1281, 2005.
9.
Halvorsen Y.C.Franklin D.Bond A.L.Hitt D.C.Auchter C.Boskey A.L.Paschalis E.P.Wilkison W.O.Gimble J.M. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cellsTissue Eng77292001. 9. Halvorsen, Y.C., Franklin, D., Bond, A.L., Hitt, D.C., Auchter, C., Boskey, A.L., Paschalis, E.P., Wilkison, W.O., and Gimble, J.M. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng 7, 729, 2001.
10.
Zuk P.A.Zhu M.Mizuno H.Huang J.Futrell J.W.Katz A.J.Benhaim P.Lorenz H.P.Hedrick M.H. Multilineage cells from human adipose tissue: implications for cell-based therapiesTissue Eng72112001. 10. Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P., and Hedrick, M.H. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7, 211, 2001.
11.
Mizuno H. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and literature reviewJ Nihon Med Sch76562009. 11. Mizuno, H. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and literature review. J Nihon Med Sch 76, 56, 2009.
12.
Lindroos B.Suuronen R.Miettinen S. The potential of adipose stem cells in regenerative medicineStem Cell Rev72692011. 12. Lindroos, B., Suuronen, R., and Miettinen, S. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev 7, 269, 2011.
13.
Kocaoemer A.Kern S.Klüter H.Bieback K. Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissueStem Cells2512702007. 13. Kocaoemer, A., Kern, S., Klüter, H., and Bieback, K. Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells 25, 1270, 2007.
14.
Lindroos B.Aho K.Kuokkanen H.Räty S.Huhtala H.Lemponen R.Yli-Harja O.Suuronen R.Miettinen S. Differential gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serumTissue Eng Part A1622812010. 14. Lindroos, B., Aho, K., Kuokkanen, H., Räty, S., Huhtala, H., Lemponen, R., Yli-Harja, O., Suuronen, R., and Miettinen, S. Differential gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serum. Tissue Eng Part A 16, 2281, 2010.
15.
Mitchell J.B.Mcintosh K.Zvonic S.Garrett S.Floyd Z.E.Kloster A.Halvorsen Y.Storms R.W.Goh B.Kilroy G.Wu X.Gimble J.M. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell–associated markersStem Cells243762006. 15. Mitchell, J.B., Mcintosh, K., Zvonic, S., Garrett, S., Floyd, Z.E., Kloster, A., Halvorsen, Y., Storms, R.W., Goh, B., Kilroy, G., Wu, X., and Gimble, J.M. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell–associated markers. Stem Cells 24, 376, 2006.
16.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assaysJ Immunol Methods65551983. 16. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65, 55, 1983.
17.
Rebelatto C.K.Aguiar A.M.Moretão M.P.Senegaglia A.C.Hansen P.Barchiki F.Oliveira J.Martins J.Kuligovski C.Mansur F.Christofis A.Amaral V.F.Brofman P.S.Goldenberg S.Nakao L.S.Correa A. dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissueExp Biol Med2339012008. 17. Rebelatto, C.K., Aguiar, A.M., Moretão, M.P., Senegaglia, A.C., Hansen, P., Barchiki, F., Oliveira, J., Martins, J., Kuligovski, C., Mansur, F., Christofis, A., Amaral, V.F., Brofman, P.S., Goldenberg, S., Nakao, L.S., and Correa, A. dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med 233, 901, 2008.
18.
Guillot P.V.Bari C.Dell'Accio F.Kurata H.Polak J.Fish N.M. Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sourcesDifferentiation769462008. 18. Guillot, P.V., Bari, C., Dell'Accio, F., Kurata, H., Polak, J., and Fish, N.M. Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources. Differentiation 76, 946, 2008.
19.
Peister A.Woodruff M.A.Prince J.J.Gray D.P.Hutmacher D.W.Guldberg R.E. Cell sourcing for bone tissue engineering: amniotic fluid stem cells have a delayed, robust differentiation compared to mesenchymal stem cellsStem Cell Res7172011. 19. Peister, A., Woodruff, M.A., Prince, J.J., Gray, D.P., Hutmacher, D.W., and Guldberg, R.E. Cell sourcing for bone tissue engineering: amniotic fluid stem cells have a delayed, robust differentiation compared to mesenchymal stem cells. Stem Cell Res 7, 17, 2011.
20.
Seong J.M.Kim B.Park J.Kwon I.K.Mantalaris A.Hwang Y. Stem cells in bone tissue engineeringBiomed Mater50620012010. 20. Seong, J.M., Kim, B., Park, J., Kwon, I.K., Mantalaris, A. and Hwang, Y., Stem cells in bone tissue engineering. Biomed Mater 5, 062001, 2010.
21.
Halme D.G.Kessler D.A. FDA regulation of stem-cell-based therapiesN Engl J Med35517302006. 21. Halme, D.G., and Kessler, D.A. FDA regulation of stem-cell-based therapies. N Engl J Med 355, 1730, 2006.
22.
Mannello F.Tonti G.A. Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? all that glitters is not gold!Stem Cells2516032007. 22. Mannello, F., and Tonti, G.A. Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? all that glitters is not gold! Stem Cells 25, 1603, 2007.
23.
Spees J.L.Gregory C.A.Singh H.Tucker H.A.Peister A.Lynch P.J.Hsu S.Smith J.Prockopy D.J. Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapyMol Ther94472004. 23. Spees, J.L., Gregory, C.A., Singh, H., Tucker, H.A., Peister, A., Lynch, P.J., Hsu, S., Smith, J., and Prockopy, D.J. Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol Ther 9, 447, 2004.
24.
Martin M.J.Muotri A.Gage F.Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acidNat Med112282005. 24. Martin, M.J., Muotri, A., Gage, F., and Varki, A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11, 228, 2005.
25.
Heiskanen A.Satomaa T.Tiitinen S.Laitinen A.Mannelin S.Impola U.Mikkola M.Olsson C.Miller-Podraza H.Blomqvist M.Olonen A.Salo H.Lehenkari P.Tuuri T.Otonkoski T.Natunen J.Saarinen J.Laine J. N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversibleStem Cells251972007. 25. Heiskanen, A., Satomaa, T., Tiitinen, S., Laitinen, A., Mannelin, S., Impola, U., Mikkola, M., Olsson, C., Miller-Podraza, H., Blomqvist, M., Olonen, A., Salo, H., Lehenkari, P., Tuuri, T., Otonkoski, T., Natunen, J., Saarinen, J., and Laine, J. N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells 25, 197, 2007.
26.
Selvaggi T.A.Walker R.E.Fleisher T.A. Development of antibodies to fetal calf serum with arthus-like reactions in human immunodeficiency virus–infected patients given syngeneic lymphocyte infusionsBlood897761997. 26. Selvaggi, T.A., Walker, R.E., and Fleisher, T.A. Development of antibodies to fetal calf serum with arthus-like reactions in human immunodeficiency virus–infected patients given syngeneic lymphocyte infusions. Blood 89, 776, 1997.
27.
Aldahmash A.Haack-Sørensen M.Al-Nbaheen M.Harkness L.Abdallah B.M.Kassem M. Human serum is as efficient as fetal bovine serum in supporting proliferation and differentiation of human multipotent stromal (mesenchymal) stem cells in vitro and in vivoStem Cell Rev78602011. 27. Aldahmash, A., Haack-Sørensen, M., Al-Nbaheen, M., Harkness, L., Abdallah, B.M., and Kassem, M. Human serum is as efficient as fetal bovine serum in supporting proliferation and differentiation of human multipotent stromal (mesenchymal) stem cells in vitro and in vivo. Stem Cell Rev 7, 860, 2011.
28.
Goedecke A.Wobus M.Krech M.Münch N.Richter K.Hölig K.Bornhauser M. Differential effect of platelet-rich plasma and fetal calf serum on bone marrow-derived human mesenchymal stromal cells expanded in vitroJ Tissue Eng Regen Med56482011. 28. Goedecke, A., Wobus, M., Krech, M., Münch, N., Richter, K., Hölig, K., and Bornhauser, M. Differential effect of platelet-rich plasma and fetal calf serum on bone marrow-derived human mesenchymal stromal cells expanded in vitro. J Tissue Eng Regen Med 5, 648, 2011.
29.
Horn P.Bokermann G.Cholewa D.Bork S.Walenda T.Koch C.Drescher W.Hutschenreuther G.Zenke M.Ho A.D.Wagner W. Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cellsCytotherapy128882010. 29. Horn, P., Bokermann, G., Cholewa, D., Bork, S., Walenda, T., Koch, C., Drescher, W., Hutschenreuther, G., Zenke, M., Ho, A.D., and Wagner. W. Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cells. Cytotherapy 12, 888, 2010.
30.
van de Valk J.Brunner D.De Smet K.Fex Svenningsen Å.Honegger P.Knudsen L.E.Lindl T.Noraberg J.Price A.Scarino M.L.Gstraunthaler G. Optimization of chemically defined cell culture media–replacing fetal bovine serum in mammalian in vitro methodsToxicol In Vitro2410532010. 30. van de Valk, J., Brunner, D., De Smet, K., Fex Svenningsen, Å., Honegger, P., Knudsen, L.E., Lindl, T., Noraberg, J., Price, A., Scarino, M.L., and Gstraunthaler, G. Optimization of chemically defined cell culture media–replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro 24, 1053, 2010.
31.
Cordonnier T.Langonné A.Sohier J.Layrolle P.Rosset P.Sensébé L.Deschaseaux F. Consistent osteoblastic differentiation of human mesenchymal stem cells with bone morphogenetic protein 4 and low serumTissue Eng Part C Methods172492011. 31. Cordonnier, T., Langonné, A., Sohier, J., Layrolle, P., Rosset, P., Sensébé, L., and Deschaseaux, F. Consistent osteoblastic differentiation of human mesenchymal stem cells with bone morphogenetic protein 4 and low serum. Tissue Eng Part C Methods 17, 249, 2011.
32.
Mimura S.Kimura N.Hirata M.Tateyama D.Hayashida M.Umezawa A.Kohara A.Nikawa H.Okamoto T.Furue M.K. Growth factor-defined culture médium for human mesenchymal stem cellsInt J Dev Biol551812011. 32. Mimura, S., Kimura, N., Hirata, M., Tateyama, D., Hayashida, M., Umezawa, A., Kohara, A., Nikawa, H., Okamoto, T., and Furue, M.K. Growth factor-defined culture médium for human mesenchymal stem cells. Int J Dev Biol 55, 181, 2011.
33.
Tarle S.A.Shi S.Kaigler D. Development of a serum-free system to expand dental-derived stem cells: PDLSCs and SHEDsJ Cell Physiol226662011. 33. Tarle, S.A., Shi, S., and Kaigler, D. Development of a serum-free system to expand dental-derived stem cells: PDLSCs and SHEDs. J Cell Physiol 226, 66, 2011.
34.
Chieregato K.Castegnaro S.Madeo D.Astori G.Pegoraro M.Rodeghiero F. Epidermal growth factor, basic fibroblast growth factor and platelet-derived growth factor-bb can substitute for fetal bovine serum and compete with human platelet-rich plasma in the ex vivo expansion of mesenchymal stromal cells derived from adipose tissueCytotherapy139332011. 34. Chieregato, K., Castegnaro, S., Madeo, D., Astori, G., Pegoraro, M., and Rodeghiero, F. Epidermal growth factor, basic fibroblast growth factor and platelet-derived growth factor-bb can substitute for fetal bovine serum and compete with human platelet-rich plasma in the ex vivo expansion of mesenchymal stromal cells derived from adipose tissue. Cytotherapy 13, 933, 2011.
35.
Solmesky L.Lefler S.Jacob-Hirsch J.Bulvik S.Rechavi G.Weil M. Serum free cultured bone marrow mesenchymal stem cells as a platform to characterize the effects of specific moleculesPLoS One5piie126892010. 35. Solmesky, L., Lefler, S., Jacob-Hirsch, J., Bulvik, S., Rechavi, G., and Weil, M. Serum free cultured bone marrow mesenchymal stem cells as a platform to characterize the effects of specific molecules. PLoS One 5, pii:e12689, 2010.
36.
Karbanová J.Soukup T.Suchánek J.Mokrý J. Osteogenic differentiation of human dental pulp-derived stem cells under various ex-vivo culture conditionsActa Medica53792010. 36. Karbanová, J., Soukup, T., Suchánek, J., and Mokrý, J. Osteogenic differentiation of human dental pulp-derived stem cells under various ex-vivo culture conditions. Acta Medica 53, 79, 2010.
37.
Schäfer R.Schnaidt M.Klaffschenkel R.A.Siegel G.Schüle M.Rädlein M.A.Hermanutz-Klein U.Ayturan M.Buadze M.Gassner C.Danielyan L.Kluba T.Northoff H.Flegel W.A. Expression of blood group genes by mesenchymal stem cellsBr J Haematol1535202011. 37. Schäfer, R., Schnaidt, M., Klaffschenkel, R.A., Siegel, G., Schüle, M., Rädlein, M.A., Hermanutz-Klein, U., Ayturan, M., Buadze, M., Gassner, C., Danielyan, L., Kluba, T., Northoff, H., and Flegel, W.A. Expression of blood group genes by mesenchymal stem cells. Br J Haematol 153, 520, 2011.
38.
Bieback K.Hecker A.Kocaömer A.Lannert H.Schallmoser K.Strunk D.Klüter H. Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrowStem Cells2723312009. 38. Bieback, K., Hecker, A., Kocaömer, A., Lannert, H., Schallmoser, K., Strunk, D., and Klüter, H. Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells 27, 2331, 2009.
39.
Shahdadfar A.FrØndsal K.Haug T.Reinholt F.P.Brinchmann J.E. In vitro expansion of human mesenchymal stem cells: choice of serum is determinant of cell proliferation, differentiation, gene expression, and transcriptome stabilityStem Cells2313572005 39. Shahdadfar, A., FrØndsal, K., Haug, T., Reinholt, F.P., and Brinchmann, J.E. In vitro expansion of human mesenchymal stem cells: choice of serum is determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 23, 1357, 2005
40.
Bernardo M.E.Avanzini M.A.Perotti C.Cometa A.MMoretta A.Lenta E.Del Fante C.Novara F.De Silvestri A.Amendola G.Zuffardi O.Maccario R.Locatelli F. Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: further insights in the search for a fetal calf serum substituteJ Cell Physiol2111212007. 40. Bernardo, M.E., Avanzini, M.A., Perotti, C., Cometa A.M., Moretta, A., Lenta, E., Del Fante, C., Novara, F., De Silvestri, A., Amendola, G., Zuffardi, O., Maccario, R., and Locatelli, F. Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: further insights in the search for a fetal calf serum substitute. J Cell Physiol 211, 121, 2007.
41.
Bieback K.Ha V.A.Hecker A.Grassl MKinzebach S.Solz H.Sticht C.Klüter H.Bugert P. Altered gene expression in human adipose stem cells cultured with fetal bovine serum compared to human supplementsTissue Eng Part A1634672010. 41. Bieback, K., Ha, V.A., Hecker, A., Grassl M., Kinzebach, S., Solz, H., Sticht, C., Klüter, H., and Bugert, P. Altered gene expression in human adipose stem cells cultured with fetal bovine serum compared to human supplements. Tissue Eng Part A 16, 3467, 2010.
42.
Mathieu L.M.Mueller T.L.Bourban P.Pioletti D.P.Müller R.Manson J.E. Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineeringBiomaterials279052006. 42. Mathieu, L.M., Mueller, T.L., Bourban, P., Pioletti, D.P., Müller, R., and Manson, J.E. Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 27, 905, 2006.
43.
Mountford J.C. Human embryonic stem cells: origins, characteristics and potential for regenerative therapyTransfus Med1812008. 43. Mountford, J.C. Human embryonic stem cells: origins, characteristics and potential for regenerative therapy. Transfus Med 18, 1, 2008.
44.
Riekstina U.Cakstina I.Parfejevs V.Hoogduijn M.Jankovskis G.Muiznieks I.Muceniece R.Ancans J. Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermisStem Cell Rev53782009. 44. Riekstina, U., Cakstina, I., Parfejevs, V., Hoogduijn, M., Jankovskis, G., Muiznieks, I., Muceniece, R., and Ancans, J. Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev 5, 378, 2009.
45.
Jaiswal N.Haynesworth S.E.Caplan A.I.Bruder S.P. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitroJ Cell Biochem642951997. 45. Jaiswal, N., Haynesworth, S.E., Caplan, A.I., and Bruder, S.P. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64, 295, 1997.
46.
Aubin J.E. Regulation of osteoblast formation and functionRev Endocr Metab Disord2812001. 46. Aubin, J.E. Regulation of osteoblast formation and function. Rev Endocr Metab Disord 2, 81, 2001.
47.
Lian J.B.Stein G.S. Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formationCrit Rev Oral Biol Med32691992. 47. Lian, J.B., and Stein, G.S. Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit Rev Oral Biol Med 3, 269, 1992.
48.
Sodek J.Ganss B.McKee M.D. OsteopontinCrit Rev Oral Biol Med112792000. 48. Sodek, J., Ganss, B., and McKee, M.D. Osteopontin. Crit Rev Oral Biol Med 11, 279, 2000.
49.
Lian J.B.Stein G.S. Runx2/Cbfa1: a multifunctional regulator of bone formationCurr Pharm Des926772003. 49. Lian, J.B., and Stein, G.S. Runx2/Cbfa1: a multifunctional regulator of bone formation. Curr Pharm Des 9, 2677, 2003.

Information & Authors

Information

Published In

cover image Tissue Engineering Part A
Tissue Engineering Part A
Volume 19Issue Number 1-2January 2013
Pages: 277 - 289
PubMed: 22920790

History

Published in print: January 2013
Published ahead of print: 19 October 2012
Published online: 18 October 2012
Published ahead of production: 24 August 2012
Accepted: 2 August 2012
Received: 22 March 2012

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Ana Cláudia Chagas de Paula
Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Alessandra Arcoverde Cavalcanti Zonari
Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Thaís Maria da Mata Martins
Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Silviene Novikoff
Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Alexandra Rodrigues Pereira da Silva
Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Vitor Manuel Correlo
3B's Research Group—Biomaterials, Biodegradables, and Biomimetics, Department of Polymer Engineering, University of Minho, Braga, Portugal.
ICVS/3B's—Associate Laboratory, PT Government Associate Laboratory, Guimarães, Portugal.
Rui L. Reis
3B's Research Group—Biomaterials, Biodegradables, and Biomimetics, Department of Polymer Engineering, University of Minho, Braga, Portugal.
ICVS/3B's—Associate Laboratory, PT Government Associate Laboratory, Guimarães, Portugal.
Dawidson Assis Gomes
Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Alfredo Miranda Goes
Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Notes

Address correspondence to:Alfredo Miranda Goes, Ph.D.Laboratory of Cellular and Molecular ImmunologyDepartment of Biochemistry and ImmunologyInstitute of Biological SciencesUniversidade Federal de Minas Gerais, BrazilAv. Antônio Carlos, 6627 ICB-UFMG31270-910 Belo Horizonte, MGBrazil
E-mail: [email protected]

Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top