Review Article
No access
Published Online: 3 April 2014

Growing Tissues in Real and Simulated Microgravity: New Methods for Tissue Engineering

Publication: Tissue Engineering Part B: Reviews
Volume 20, Issue Number 6


Tissue engineering in simulated (s-) and real microgravity (r-μg) is currently a topic in Space medicine contributing to biomedical sciences and their applications on Earth. The principal aim of this review is to highlight the advances and accomplishments in the field of tissue engineering that could be achieved by culturing cells in Space or by devices created to simulate microgravity on Earth. Understanding the biology of three-dimensional (3D) multicellular structures is very important for a more complete appreciation of in vivo tissue function and advancing in vitro tissue engineering efforts. Various cells exposed to r-μg in Space or to s-μg created by a random positioning machine, a 2D-clinostat, or a rotating wall vessel bioreactor grew in the form of 3D tissues. Hence, these methods represent a new strategy for tissue engineering of a variety of tissues, such as regenerated cartilage, artificial vessel constructs, and other organ tissues as well as multicellular cancer spheroids. These aggregates are used to study molecular mechanisms involved in angiogenesis, cancer development, and biology and for pharmacological testing of, for example, chemotherapeutic drugs or inhibitors of neoangiogenesis. Moreover, they are useful for studying multicellular responses in toxicology and radiation biology, or for performing coculture experiments. The future will show whether these tissue-engineered constructs can be used for medical transplantations. Unveiling the mechanisms of microgravity-dependent molecular and cellular changes is an up-to-date requirement for improving Space medicine and developing new treatment strategies that can be translated to in vivo models while reducing the use of laboratory animals.

Get full access to this article

View all available purchase options and get full access to this article.


White R.J., and Averner M. Humans in space. Nature 409, 1115, 2001.
Pietsch J., Bauer J., Egli M., Infanger M., Wise P., Ulbrich C., and Grimm D. The effects of weightlessness on the human organism and mammalian cells. Curr Mol Med 11, 350, 2011.
Grimm D., Wise P., Lebert M., Richter P., and Baatout S. How and why does the proteome respond to microgravity? Expert Rev Proteomics 8, 13, 2011.
Fritsch-Yelle J.M., Leuenberger U.A., D'Aunno D.S., Rossum A.C., Brown T.E., Wood M.L., Josephson M.E., and Goldberger A.L. An episode of ventricular tachycardia during long-duration spaceflight. Am J Cardiol 81, 1391, 1998.
Perhonen M.A., Franco F., Lane L.D., Buckey J.C., Blomqvist C.G., Zerwekh J.E., Peshock R.M., Weatherall P.T., and Levine B.D. Cardiac atrophy after bed rest and spaceflight. J Appl Physiol 91, 645, 2001.
Pavy-Le-Traon A., Vasseur P., Maillet A., Güell A., Bes A., and Gharib C. Orthostatic hypotension after space flight. Presse Med 23, 1031, 1994.
Meck J.V., Reyes C.J., Perez S.A., Goldberger A.L., and Ziegler M.G. Marked exacerbation of orthostatic intolerance after long- vs. short-duration spaceflight in veteran astronauts. Psychosom Med 63, 865, 2001.
Lewis M.L., Reynolds J.L., Cubano L.A., Hatton J.P., Lawless B.D., and Piepmeier E.H. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J 12, 1007, 1998.
Cogoli A., Tschopp A., and Fuchs-Bislin P. Cell sensitivity to gravity. Science 225, 228, 1984.
Grimm D., Bauer J., Kossmehl P., Shakibaei M., Schonberger J., Pickenhahn H., Schulze-Tansil G., Vetter R., Eilles C., Paul M., and Cogoli A. Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J 16, 604, 2002.
Pietsch J., Ma X., Wehland M., Aleshcheva G., Schwarzwälder A., Segerer J., Birlem M., Horn A., Bauer J., Infanger M., and Grimm D. Spheroid formation of human thyroid cancer cells in an automated culturing system during the Shenzhou-8 Space mission. Biomaterials 34, 7694, 2013.
Grimm D., Infanger M., Westphal K., Ulbrich C., Pietsch J., Kossmehl P., Vadrucci S., Baatout S., Flick B., Paul M., and Bauer J. A delayed type of three-dimensional growth of human endothelial cells under simulated weightlessness. Tissue Eng Part A 15, 2267, 2009.
Conza N., Mainil-Varlet P., Rieser F., Kraemer J., Bittmann P., Huijser R., van den Bergh L., and Cogoli A. Tissue engineering in space. J Gravit Physiol 8, 17, 2001.
Herranz R., Anken R., Boonstra J., Braun M., Christianen P., de Geest M., Hauslage J., Hilbig R., Hill R., Lebert M., Medina F., Vagt N., Ullrich O., van Loon J., and Hemmersbach R. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13, 1, 2013.
Unsworth B.R., and Lelkes P.I. Growing tissues in microgravity. Nat Med 4, 901, 1998.
Ulbrich C., Westphal K., Baatout S., Wehland M., Bauer J., Flick B., Infanger M., Kreutz R., Vadrucci S., Egli M., Cogoli A., Derradji H., Pietsch J., Paul M., and Grimm D. Effects of basic fibroblast growth factor on endothelial cells under conditions of simulated microgravity. J Cell Biochem 104, 1324, 2008.
Grimm D., Bauer J., and Schoenberger J. Blockade of neoangiogenesis, a new and promising technique to control the growth of malignant tumors and their metastases. Curr Vasc Pharmacol 7, 347, 2009.
Nickerson C.A., Ott C.M., Wilson J.W., Ramamurthy R., and Pierson D.L. Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev 68, 345, 2004.
Albi E., Ambesi-Impiombato F.S., Peverini M., Damaskopoulou E., Fontanini E., Lazzarini R., Curcio F., and Perrella G. Thyrotropin receptor and membrane interactions in FRTL-5 thyroid cell strain in microgravity. Astrobiology 11, 57, 2011.
Grosse J., Wehland M., Pietsch J., Ma X., Ulbrich C., Schulz H., Saar K., Hübner N., Hauslage J., Hemmersbach R., Braun M., van Loon J., Vagt N., Infanger M., Eilles C., Egli M., Richter P., Baltz T., Einspanier R., Sharbati S., and Grimm D. Short-term weightlessness produced by parabolic flight maneuvers altered gene expression patterns in human endothelial cells. FASEB J 26, 639, 2012.
Hemmersbach R., Krause M., Bräucker R., and Ivanova K. Graviperception in ciliates: steps in the transduction chain. Adv Space Res 35, 296, 2005.
Briegleb W. Some qualitative and quantitative aspects of the fast-rotating clinostats as a research tool. ASGSB Bull 5, 23, 1992.
Briegleb W. Ein modell fuer schwerlosigkeits-simulation an mikroorganismen. Naturwissenschaften 54, 67, 1967.
Klaus D. Clinostats and bioreactors. ASGSB Bull 14, 55, 2001.
van Loon J.J.W.A. Biology in space and life on earth. In: Brinckmann E., ed. Effects of Spaceflight on Biological Systems. Weinheim: Wiley-VCH, 2007, p. 17.
Murakami S., and Yamada M. Architecture of statocytes and chloroplasts under the microgravity environment. Jpn Soc Biol Sci Space 2, 301, 1988.
Hoson T., Kamisaka S., Masuda Y., and Yamashita M. Changes in plant growth process under microgravity conditions simulated by a three-dimensional clinostat. Bot Mag 105, 53, 1992.
Hoson T., Kamisaka S., Masuda Y., Yamashita M., and Buchen B. Evaluation of the three dimensional clinostat as a simulator of weightlessness. Planta 203, 197, 1997.
Borst A.G., and van Loon J.J.W.A. Technology and developments for the random positioning machine, RPM. Microgravity Sci Technol 21, 287, 2009.
Leguy C.A.D., Delfos R., Pourquie M.J.B.M., Poelma C., Krooneman J., Westerweel J., and van Loon J.J.W.A. Fluid motion for microgravity simulations in a random positioning machine. Gravit Space Biol 25, 36, 2011.
Wakayama S., Kawahara Y., Li C., Yamagata K., Yuge L., and Wakayama T. Detrimental effects of microgravity on mouse pre-implantation development in vitro. PLoS One 4, e6753, 2009.
Luo M.Z., Meng R., Li S.S., Di S.M., Han J., Zhang W., and Shang P. Weightlessness simulated with random positioning machine influences the cytoskeleton and migration of MC3T3-E1 cells. J Jpn Soc Microgravity Appl 28, S41, 2011.
Loesberg W.A., Walboomers X.F., Bronkhorst E.M., van Loon J.J., and Jansen J.A. The effect of combined simulated microgravity and microgrooved surface topography on fibroblasts. Cell Motil Cytoskeleton 64, 174, 2007.
Aleshcheva G., Sahana J., Ma X., Hauslage J., Hemmersbach R., Egli M., Infanger M., Bauer J., and Grimm D. Changes in morphology, gene expression and protein content in chondrocytes cultured on a random positioning machine. PLoS One 8, e79057, 2013.
Prodanov L., van Loon J.J.W.A., te Riet J., Jansen J.A., and Walboomers X.F. Nanostructured substrate conformation can decrease osteoblast-like cell dysfunction in simulated microgravity conditions. J Tissue Eng Regen Med 2012.
Ichigi J., and Asashima M. Dome formation and tubule morphogenesis by Xenopus kidney A6 cell cultures exposed to microgravity simulated with a 3D-clinostat and to hypergravity. In Vitro Cell Dev Biol Anim 37, 31, 2001.
Jiang Y.D., Li W.N., Wang L.F., Zhang Z.Y., Zhang B.M., and Wu H.J. Several new types of clinostats. Space Med Med Eng 21, 368, 2008.
Siamwala J.H., Reddy S.H., Majumder S., Kolluru G.K., Muley A., Sinha S., and Chatterjee S. Simulated microgravity perturbs actin polymerization to promote nitric oxide-associated migration in human immortalized Eahy926 cells. Protoplasma 242, 3, 2010.
Xiang L., Qim F., Daim D., Li C., and Jiang Y. Simulated microgravity affects growth of Escherichia coli and recombinant beta-D-glucuronidase production. Appl Biochem Biotech 162, 654, 2010.
Hemmersbach R., Strauch S.M., Seibt D., and Schuber M. Comparative studies on gravisensitive protists on ground (2D and 3D clinostats) and in microgravity. Microgravity Sci Technol 18, 257, 2006.
Goodwin T.J., Jessup J.M., and Wolf D.A. Morphological differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels. In Vitro Cell Dev Biol 28A, 47, 1992.
Hammond T.G., and Hammond J.M. Optimized suspension culture: the rotating-wall vessel. Am J Physiol Renal Physiol 281, F12, 2001.
Liu T., Li X., Sun X., Ma X., and Cui Z. Analysis on forces and movement of cultivated particles in a rotating wall vessel bioreactor. Biochem Eng J 18, 97, 2004.
Goodwin T.J., Prewett T.L., Wolf D.A., and Spaulding G.F. Reduced shear stress: a major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity. J Cell Biochem 51, 301, 1993.
Nauman E.A., Ott C.M., Sander E., Tucker D.L., Pierson D., Wilson J.W., and Nickerson C.A. Novel quantitative biosystem for modeling physiological fluid shear stress on cells. Appl Environ Microbiol 73, 699, 2007.
Guo X.M., Zhao Y.S., Chang H.X., Wang C.Y., Zhang X.A., Duan C.M., Dong L.Z., Jiang H., Li J., Song Y., and Yang X.J. Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation 113, 2229, 2006.
Tucker D.L., Ott C.M., Huff S., Fofanov Y., Pierson D.L., Willson R.C., and Fox G.E. Characterization of Escherichia coli MG1655 grown in a low-shear modeled microgravity environment. BMC Microbiol 7, 15, 2007.
Cinbiz M.N., Tıgli R.S., Beşkardeş I.G., Gümüşderelioğlu M., and Colak U. Computational fluid dynamics modeling of momentum transport in rotating wall perfused bioreactor for cartilage tissue engineering. J Biotech 150, 389, 2010.
Jin F., Zhang Y.J., Xuan K., He D.N., Deng T.Z., Tang L., Lu W., and Duan Y.Z. Establishment of three-dimensional tissue-engineered bone constructs under microgravity-simulated conditions. Artif Organs 34, 118, 2010.
Hou Y., Song C., Xie W.J., Wei Z., Huang R.P., Liu W., Zhang Z.L., and Shi Y.B. Excellent effect of three-dimensional culture condition on pancreatic islets. Diabetes Res Clin Pract 86, 11, 2009.
Schrader S., Kremling C., Klinger M., Laqua H., and Geerling G. Cultivation of lacrimal gland acinar cells in a microgravity environment. Br J Ophthalmol 93, 1121, 2009.
Pietsch J., Sickmann A., Weber G., Bauer J., Egli M., Wildgruber R., Infanger M., and Grimm D. A proteomic approach to analysing spheroid formation of two human thyroid cell lines cultured on a random positioning machine. Proteomics 11, 2095, 2011.
Infanger M., Kossmehl P., Shakibaei M., Baatout S., Witzing A., Grosse J., Bauer J., Cogoli A., Faramarzi S., Derradji H., Neefs M., Paul M., and Grimm D. Induction of three-dimensional assembly and increase in apoptosis of human endothelial cells by simulated microgravity: impact of vascular endothelial growth factor. Apoptosis 11, 749, 2006.
Ulbrich C., Westphal K., Pietsch J., Winkler H.D.F., Leder A., Bauer J., Kossmehl P., Grosse J., Schoenberger J., Infanger M., Egli M., and Grimm D. Characterization of human chondrocytes exposed to simulated microgravity. Cell Physiol Biochem 25, 551, 2010.
Ma X., Wehland M., Schulz H., Saar K., Hübner N., Infanger M., Bauer J., and Grimm D. Genomic approach to identify factors that drive the formation of three-dimensional structures by EA.hy926 endothelial cells. PLoS One 8, e64402, 2013.
Konstantinova N.A., Buravkova L.B., Manuilova E.S., and Grivennikov I.A. The effects of gravity vector randomization on mouse embryonic stem cells in vitro. J Gravit Physiol 13, 149, 2006.
Schönberger J., Bauer J., Spruß T., Weber G., Chahoud I., Eilles C., and Grimm D. Establishment and characterization of the follicular thyroid carcinoma cell line ML-1. J Mol Med 78, 102, 2000.
Weber G., Grimm D., and Bauer J. Application of binary buffer systems to free flow cell electrophoresis. Electrophoresis 21, 325, 2000.
Ulbrich C., Pietsch J., Grosse J., Wehland M., Schulz H., Saar K., Hübner N., Hauslage J., Hemmersbach R., Braun M., Van Loon J., Vagt N., Egli M., Richter P., Einspanier R., Sharbati S., Baltz T., Infanger M., Ma X., and Grimm D. Differential gene regulation under altered gravity conditions in follicular thyroid cancer cells: relationship between the extracellular matrix and the cytoskeleton. Cell Physiol Biochem 28, 185, 2011.
Grimm D., Bauer J., Ulbrich C., Westphal K., Wehland M., Infanger M., Aleshcheva G., Pietsch J., Ghardi M., Beck M., El-Saghire H., De Saint-Georges L., and Baatout S. Different responsiveness of endothelial cells to vascular endothelial growth factor and basic fibroblast growth factor added to culture media under gravity and simulated microgravity. Tissue Eng Part A 16, 1559, 2010.
Qian A.R., Zhang W., Xie L., Weng Y., Yang P., Wang Z., Hu L., Xu H., Tian Z., and Shang P. Simulated weightlessness alters biological characteristics of human breast cancer cell line MCF-7. Acta Astronaut 63, 947, 2008.
Uva B.M., Masini M.A., Sturla M., Prato P., Passalacqua M., Giuliani M., Tagliafierro G., and Strollo F. Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture. Brain Res 934, 132, 2002.
Rösner H., Wassermann T., Möller W., and Hanke W. Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells. Protoplasma 229, 225, 2006.
Hughes-Fulford M. Function of the cytoskeleton in gravisensing during spaceflight. Adv Space Res 32, 1585, 2003.
Nelson L.J., Walker S.W., Hayes P.C., and Plevris J.N. Low-shear modelled microgravity environment maintains morphology and differentiated functionality of primary porcine hepatocyte cultures. Cells Tissues Organs 192, 125, 2010.
Ingber D. How cells (might) sense microgravity, FASEB J 13, S3, 1999.
Schiller H.B., and Fässler R. Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep 14, 509, 2013.
del Rio A., Perez-Jimenez R., Liu R.C., Roca-Cusachs P., Fernandez J.M., and Sheetz M.P. Stretching single talin rod molecules activates vinculin binding. Science 323, 638, 2009.
Gershovich P.M., Gershovich J.G., and Buravkova L.B. Simulated microgravity alters actin cytoskeleton and integrin-mediated focal adhesions of cultured human mesenchymal stromal cells. European Space Agency (Special Publication) ESA SP 663 SP. Noordwijk: European Space Agency, 2008.
Luo M., Yang Z., Li J., Xu H., Li S., Zhang W., Qian A., and Shang P. Calcium influx through stretch-activated channels mediates microfilament reorganization in osteoblasts under simulated weightlessness. Adv Space Res 51, 2058, 2013.
Dai Z.Q., Wu F., Chen J., Xu H.J., Wang H.H., Guo F.M., Tan Y.J., Ding B., Wang J.F., Wan Y.M., and Li Y.H. Actin microfilament mediates osteoblast Cbfa1 responsiveness to BMP2 under simulated microgravity. PLoS One 8, e63661, 2013.
Chang D., Guo Y., and Liu C. Effects of microgravity environment on intracellular signal transduction pathways. Med J Chin Peoples Liberation Army 37, 749, 2012.
Spisni E., Toni M., Strillacci A., Galleri G., Santi S., Griffoni C., and Tomasi V. Caveolae and caveolae constituents in mechanosensing: effect of modeled microgravity on cultured human endothelial cells. Cell Biochem Biophys 46, 155, 2006.
Meng R., Xu H.Y., Di S.M., Shi D.Y., Qian A.R., Wang J.F., and Shang P. Human mesenchymal stem cells are sensitive to abnormal gravity and exhibit classic apoptotic features. Acta Biochim Biophys Sin (Shanghai) 43, 133, 2011.
Takahashi A., Suzuki H., Omori K., Seki M., Hashizume T., Shimazu T., Ishioka N., and Ohnishi T. The expression of p53-regulated genes in human cultured lymphoblastoid TSCE5 and WTK1 cell lines during spaceflight. Int J Radiation Biol 86, 669, 2010.
Uva B.M., Masini M.A., Sturla M., Bruzzone F., Giuliani M., Tagliafierro G., and Strollo F. Microgravity-induced apoptosis in cultured glial cells. Eur J Histochem 46, 209, 2002.
Morbidelli L., Monici M., Marziliano N., Cogoli A., Fusi F., Waltenberger J. and Ziche M. Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic signals. Biochem Biophys Res Commun 334, 491, 2005.
Nakamura H., Aoki K., Masuda W., Alles N., Nagano K., Fukushima H., Osawa K., Yasuda H., Nakamura I., Mikuni-Takagaki Y., Ohya K., Maki K., and Jimi E. Disruption of NF-κB1 prevents bone loss caused by mechanical unloading. J Bone Miner Res 28, 1457, 2013.
Clejan S., O'Connor K., and Rosensweig N. Tri-dimensional prostate cell cultures in simulated microgravity and induced changes in lipid second messengers and signal transduction. J Cell Mol Med 5, 60, 2001.
Grosse J., Wehland M., Pietsch J., Schulz H., Saar K., Hubner N., Eilles C., Bauer J., Abou-El-Ardat K., Baatout S., Ma X., Infanger M., Hemmersbach R., and Grimm D. Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids. FASEB J 26, 5124, 2012.
Xu D., Guo S., and Liu M. Identification of miRNAs involved in long-term simulated microgravity response in Solanum lycopersicum. Plant Physiol Biochem 66, 10, 2013.
Fang L., Deng Z., Shatseva T., Yang J., Peng C., Du W.W., Yee A.J., Ang L.C., He C., Shan S.W., and Yang B.B. MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-beta 8. Oncogene 30, 806, 2011.
Shilo S., Roy S., Khanna S., and Sen C.K. Evidence for the involvement of miRNA in redox regulated angiogenic response of human microvascular endothelial cells. Arterioscler Thromb Vasc Biol 28, 471, 2008.
Pearson J.D. Normal endothelial cell function. Lupus 9, 183, 2000.
Alliegro M.C. Pigpen and endothelial cell differentiation. Cell Biol Int 220, 2077, 2001.
Dvorak H.F. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20, 4368, 2002.
Schiffrin E.L. The endothelium and control of blood vessel function in health and disease. Clin Invest Med 17, 602, 1994.
Mantovani A., Bussolino F., and Introna M. Cytokine regulation of endothelial cell function: from molecular level to the bedside. Immunol Today 18, 231, 1997.
Wehland M., Ma X., Braun M., Hauslage J., Hemmersbach R., Bauer J., Grosse J., Infanger M., and Grimm D. The impact of altered gravity and vibration on endothelial cells during a parabolic flight. Cell Physiol Biochem 31, 432, 2013.
Shinoka T., Shum-Tim D., Ma P.X., Tanel R.E., Isogai N., Langer R., Vacanti J.P., and Mayer J.E. Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg 115, 536, 1998.
Chlupác J., Filová E., and Bacáková L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res 58(Suppl 2), S119, 2009.
Naito Y., Shinoka T., Duncan D., Hibino N., Solomon D., Cleary M., Rathore A., Fein C., Church S., and Breuer C. Vascular tissue engineering: towards the next generation vascular grafts. Adv Drug Deliv Rev 63, 312, 2011.
Shi F., Wang Y.C., Zhao T.Z., Zhang S., Du T.Y., Yang C.B., Li Y.H., and Sun X.Q. Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathway. PLoS One 7, e40365, 2012.
Wang Y.C., Zhang S., Du T.Y., Wang B., and Sun X.Q. Clinorotation upregulates inducible nitric oxide synthase by inhibiting AP-1 activation in human umbilical vein endothelial cells. J Cell Biochem 107, 357, 2009.
Buravkova L., Romanov Y., Rykova M., Grigorieva O., and Merzlikina N. Cell-to-cell interactions in changed gravity: ground-based and flight experiments. Acta Astronaut 57, 67, 2005.
Zhang X., Nan Y., Wang H., Chen J., Wang N., Xie J., Ma J., and Wang Z. Model microgravity enhances endothelium differentiation of mesenchymal stem cells. Naturwissenschaften 100, 125, 2013.
Kang C.Y., Zou L., Yuan M., Wang Y., Li T.Z., Zhang Y., Wang J.F., Li Y., Deng X.W., and Liu C.T. Impact of simulated microgravity on microvascular endothelial cell apoptosis. Eur J Appl Physiol 111, 2131, 2011.
Versari S., Villa A., Bradamante S., and Maier J.A. Alterations of the actin cytoskeleton and increased nitric oxide synthesis are common features in human primary endothelial cell response to changes in gravity. Biochim Biophys Acta 1773, 1645, 2007.
Cotrupi S., Ranzani D., and Maier J.A. Impact of modeled microgravity on microvascular endothelial cells. Biochim Biophys Acta 1746, 163, 2005.
Carlsson S.I., Bertilaccio M.T., Ballabio E., and Maier J.A. Endothelial stress by gravitational unloading: effects on cell growth and cytoskeletal organization. Biochim Biophys Acta 1642, 173, 2003.
Grenon S.M., Jeanne M., Aguado-Zuniga J., Conte M.S., and Hughes-Fulford M. Effects of gravitational mechanical unloading in endothelial cells: association between caveolins, inflammation and adhesion molecules. Sci Rep 3, 1494, 2013.
Carlsson S.I., Bertilaccio M.T., Ascari I., Bradamante S., and Maier J.A. Modulation of human endothelial cell behaviour in simulated microgravity. J Gravit Physiol 9, P273, 2002.
Mariotti M., and Maier J.A. Gravitational unloading induces an anti-angiogenic phenotype in human microvascular endothelial cells. J Cell Biochem 104, 129, 2008.
Infanger M., Kossmehl P., Shakibaei M., Cogoli A., Witzing A., Faramarzi S., Wittfoht W., Paul M., and Grimm D. Vascular endothelial growth factor inhibits programmed cell death of endothelial cells induced by clinorotation. J Gravit Physiol 11, P199, 2004.
Infanger M., Ulbrich C., Baatout S., Wehland M., Kreutz R., Bauer J., Grosse J., Vadrucci S., Cogoli A., Derradji H., Neefs M., Küsters S., Spain M., Paul M., and Grimm D. Modeled gravitational unloading induced downregulation of endothelin-1 in human endothelial cells. J Cell Biochem 101, 1439, 2007.
Chang C.H., Lin F.H., Kuo T.F., and Liu H.C. Cartilage tissue engineering. Biomed Eng Appl Basis Commun 17, 61, 2005.
Mahmoudifar N., and Doran P.M. Tissue engineering of human cartilage in bioreactors using single and composite cell-seeded scaffolds. Biotech Bioeng 91, 338, 2005.
Kock L., van Donkelaar C.C., and Ito K. Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res 347, 613, 2012.
Darling E.M., and Athanasiou K.A. Rapid phenotypic changes in passaged articular chondrocyte subopulations. J. Orthop Res 23, 425, 2005.
Goessler U.R., Bugert P., Bieback K., Baisch A., Sadick H., Verse T., Kluter H., Hormann K., and Riedel F. Expression of collagen and fiber-associated proteins in human septal cartilage during in vitro dedifferentiation. Int J Mol Med 14, 1015, 2004.
Goessler U.R., Bieback K., Bugert P., Naim R., Schafer C., Sadick H., Hormann K., and Riedel F. Human chondrocytes differentially express matrix modulators during in vitro expansion for tissue engineering. Int J Mol Med 16, 509, 2005.
Saltzman W.M. Weaving cartilage at zero g: the reality of tissue engineering in space. Proc Natl Acad Sci U S A 94, 13380, 1997.
Freed L.E., Langer R., Martin I., Pellis N.R., and Vunjak-Novakovic G. Tissue engineering of cartilage in space. Proc Natl Acad Sci U S A 94, 13885, 1997.
Marlovits S., Tichy B., Truppe M., Gruber D., and Vécsei V. Chondrogenesis of aged human articular cartilage in a scaffold-free bioreactor. Tissue Eng Part A 9, 1215, 2003.
Ohyabu Y., Kida N., Kojima H., Taguchi T., Tanaka J., and Uemura T. Cartilaginous tissue formation from bone marrow cells using rotating wall vessel (RWV) bioreactor. Biotechnol Bioeng 95, 1003, 2006.
Stamenković V., Keller G., Nesic D., Cogoli A., and Grogan S.P. Neocartilage formation in 1 g, simulated, and microgravity environments: implications for tissue engineering. Tissue Eng Part A 16, 1729, 2010.
National Research Council. Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era. Washington, DC: The National Academies Press, 2011.
Strollo F. Hormonal changes in humans during spaceflight. Adv Space Biol Med 7, 99, 1999.
Grindeland R.E., Popova I.A., Vasques M., and Arnaud S.B. Cosmos 1887 mission overview: effects of microgravity on rat body and adrenal weights and plasma constituents. FASEB J 41, 105, 1990.
Albi E., Ambesi-Impiombato F.S., Villani M., De Pol I., Spelat R., Lazzarini R., and Perrella G. Thyroid cell growth: sphingomyelin metabolism as non-invasive marker for cell damage acquired during spaceflight. Astrobiology 10, 811, 2010.
Albi E., Curcio F., Spelat R., Lazzarini A., Lazzarini R., Loreti E., Ferri I., and Ambesi-Impiombato F.S. Observing the mouse thyroid sphingomyelin under space conditions: a case study from the MDS mission in comparison with hypergravity conditions. Astrobiology 12, 1035, 2012.
Masini M.A., Albi E., Barmo C., Bonfiglio T., Bruni L., Cenesi L., Cataldi S., Curcio F., D'Amora M., Ferri I., Goto K., Kawano F., Lazzarini R., Loreti E., Nakai N., Ohira T., Ohira Y., Palmero S., Prato P., Ricci F., Scarabelli L., Shibaguchi T., Spelat R., Strollo F., and Ambesi-Impiombato F.S. The impact of long-term exposure to space environment on adult mammalian organisms: a study on mouse thyroid and testis. PLoS One 7, e35418, 2012.
Albi E., Curcio F., Spelat R., Lazzarini A., Lazzarini R., Loreti E., Ferri I., and Ambesi-Impiombato F.S. Loss of parafollicular cells during gravitational changes (microgravity, hypergravity) and the secret effect of pleiotrophin. PLoS One 7, e48518, 2012.
Infanger M., Kossmehl P., Shakibaei M., Bauer J., Kossmehl-Zorn S., Cogoli A., Curcio F., Oksche A., Wehland M., Kreutz R., Paul M., and Grimm D. Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells. Cell Tissue Res 324, 267, 2006.
Kossmehl P., Shakibaei M., Cogoli A., Infanger M., Curcio F., Schönberger J., Eilles C., Bauer J., Pickenhahn H., Schulze-Tanzil G., Paul M., and Grimm D. Weightlessness induced apoptosis in normal thyroid cells and papillary thyroid carcinoma cells via extrinsic and intrinsic pathways. Endocrinology 144, 4172, 2003.
Pietsch J., Kussian R., Sickmann A., Bauer J., Weber G., Nissum M., Westphal K., Egli M., Grosse J., Schönberger J., Wildgruber R., Infanger M., and Grimm D. Application of free-flow IEF to identify protein candidates changing under microgravity conditions. Proteomics 10, 904, 2010.
Pietsch J., Sickmann A., Weber G., Bauer J., Egli M., Wildgruber R., Infanger M., and Grimm D. Metabolic enzyme diversity in different human thyroid cell lines and their sensitivity to gravitational forces. Proteomics 12, 2539, 2012.
Pietsch J., Riwaldt S., Bauer J., Sickmann A., Weber G., Grosse J., Infanger M., Eilles C., and Grimm D. Interaction of proteins identified in human thyroid cells. Int J Mol Sci 14, 1164, 2013.
Martin A., Zhou A., Gordon R.E., Henderson S.C., Schwartz A.E., Friedmann E.W., and Davies T.F. Thyroid organoid formation in simulated microgravity: influence of keratinocyte growth factor. Thyroid 10, 481, 2000.
Konstantinov S.M., Mindova M.M., Gospodinov P.T., and Genova P.I. Three-dimensional bioreactor cultures: a useful dynamic model for the study of cellular interactions. Ann N Y Acad Sci 1030, 103, 2004.
Chang T.T., and Hughes-Fulford M. Monolayer and spheroid culture of human liver hepatocellular carcinoma cell line cells demonstrate distinct global gene expression patterns and functional phenotypes. Tissue Eng Part A 15, 559, 2009.
Weaver V.M., Petersen O.W., Wang F., Larabell C.A., Briand P., Damsky C., and Bissell M.J. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137, 231, 1997.
Ma X., Pietsch J., Wehland M., Schulz H., Saar K., Hübner N., Bauer J., Braun M., Schwarzwälder A., Segerer J., Birlem M., Horn A., Hemmersbach R., Waßer K., Grosse J., Infanger M., and Grimm D. Differential gene expression profile and altered cytokine secretion of thyroid cancer cells in space. FASEB J 28, 813, 2014.

Information & Authors


Published In

cover image Tissue Engineering Part B: Reviews
Tissue Engineering Part B: Reviews
Volume 20Issue Number 6December 2014
Pages: 555 - 566
PubMed: 24597549


Published in print: December 2014
Published ahead of print: 4 April 2014
Published online: 3 April 2014
Published ahead of production: 5 March 2014
Accepted: 19 February 2014
Received: 20 November 2013


Request permissions for this article.




Daniela Grimm
Institute of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark.
Markus Wehland
Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
Jessica Pietsch
Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
Ganna Aleshcheva
Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
Petra Wise
Department of Hematology/Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California.
Jack van Loon
Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center Amsterdam & Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands & European Space Agency Technology Center, Gravity Lab (ESA-ESTEC-TEC-MMG), Noordwijk, The Netherlands.
Claudia Ulbrich
Department of Membrane Physiology, Institute of Physiology, University of Hohenheim, Stuttgart, Germany.
Nils E. Magnusson
Medical Research Laboratory, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Manfred Infanger
Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
Johann Bauer
Max-Planck Institute for Biochemistry, Martinsried, Germany.


Address correspondence to:Daniela Grimm, MDInstitute of Biomedicine, PharmacologyAarhus UniversityWilhelm Meyers Allé 4Aarhus C DK-8000Denmark
E-mail: [email protected]

Disclosure Statement

No competing financial interests exist.

Metrics & Citations



Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options


View PDF/ePub

Full Text

View Full Text







Copy the content Link

Share on social media

Back to Top