Lymphatic Vascular Regeneration: The Next Step in Tissue Engineering
Publication: Tissue Engineering Part B: Reviews
Volume 22, Issue Number 1
Abstract
The lymphatic system plays a crucial role in interstitial fluid drainage, lipid absorption, and immunological defense. Lymphatic dysfunction results in lymphedema, fluid accumulation, and swelling of soft tissues, as well as a potentially impaired immune response. Lymphedema significantly reduces quality of life of patients on a physical, mental, social, and economic basis. Current therapeutic approaches in treatment of lymphatic disease are limited. Over the last decades, great progress has been made in the development of therapeutic strategies to enhance vascular regeneration. These solutions to treat vascular disease may also be applicable in the treatment of lymphatic diseases. Comparison of the organogenic process and biological organization of the vascular and lymphatic systems and studies in the regulatory mechanisms involved in lymphangiogenesis and angiogenesis show many common features. In this study, we address the similarities between both transport systems, and focus in depth on the biology of lymphatic development. Based on the current advances in vascular regeneration, we propose different strategies for lymphatic tissue engineering that may be used for treatment of primary and secondary lymphedema.
Get full access to this article
View all available purchase options and get full access to this article.
References
1.
Dixon J.B. Lymphatic lipid transport: sewer or subway? Trends Endocrinol Metab 21, 480, 2010.
2.
Ruddle N.H. Lymphatic vessels and tertiary lymphoid organs. J Clin Invest 124, 953, 2014.
3.
Tammela T., and Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell 140, 460, 2010.
4.
Mortimer P.S., and Rockson S.G. New developments in clinical aspects of lymphatic disease. J Clin Invest 124, 915, 2014.
5.
Moffatt C.J., Franks P.J., Doherty D.C., Williams A.F., Badger C., Jeffs E., Bosanquet N., and Mortimer P.S. Lymphoedema: an underestimated health problem. QJM 96, 731, 2003.
6.
Mehrara B.J., Zampell J.C., Suami H., and Chang D.W. Surgical management of lymphedema: past, present, and future. Lymphat Res Biol 9, 159, 2011.
7.
Kanapathy M., Patel N.M., Kalaskar D.M., Mosahebi A., Mehrara B.J., and Seifalian A.M. Tissue-engineered lymphatic graft for the treatment of lymphedema. J Surg Res 192, 544, 2014.
8.
Muylaert D.E.P., Fledderus J.O., Bouten C.V.C., Dankers P.Y.W., and Verhaar M.C. Combining tissue repair and tissue engineering; bioactivating implantable cell-free vascular scaffolds. Heart 100, 1825, 2014.
9.
Park K.M., and Gerecht S. Harnessing developmental processes for vascular engineering and regeneration. Development 141, 2760, 2014.
10.
Zhang L., and Xu Q. Stem/progenitor cells in vascular regeneration. Arterioscler Thromb Vasc Biol 34, 1114, 2014.
11.
Yang Y., and Oliver G. Development of the mammalian lymphatic vasculature. J Clin Invest 124, 888, 2014.
12.
Thomas L.V., Lekshmi V., and Nair P.D. Tissue engineered vascular grafts—preclinical aspects. Int J Cardiol 167, 1091, 2013.
13.
Dixon J.B., Raghunathan S., and Swartz M.A. A tissue-engineered model of the intestinal lacteal for evaluating lipid transport by lymphatics. Biotechnol Bioeng 103, 1224, 2009.
14.
Fu Y.X., and Chaplin D.D. Development and maturation of secondary lymphoid tissues. Annu Rev Immunol 17, 399, 1999.
15.
Vranova M., and Halin C. Lymphatic vessels in inflammation. J Clin Cell Immunol 5, 1, 2014.
16.
Liao S., and Padera T.P. Lymphatic function and immune regulation in health and disease. Lymphat Res Biol 11, 136, 2013.
17.
Cho S., and Atwood J.E. Peripheral edema. Am J Med 113, 580, 2002.
18.
Mallick A., and Bodenham A. Disorders of the lymph circulation: their relevance to anaesthesia and intensive care. Br J Anaesth 91, 265, 2003.
19.
Wang Y., and Oliver G. Current views on the function of the lymphatic vasculature in health and disease. Genes Dev 75, 2115, 2010.
20.
Ridner S.H. The psycho-social impact of lymphedema. Lymphat Res Biol 7, 109, 2009.
21.
Rockson S.G., and Rivera K.K. Estimating the population burden of lymphedema. Ann N Y Acad Sci 1131, 147, 2008.
22.
Gordon K., Schulte D., Brice G., Simpson M.A., Roukens M.G., van Impel A., Connell F., Kalidas K., Jeffery S., Mortimer P.S., Mansour S., Schulte-Merker S., and Ostergaard P. Mutation in vascular endothelial growth factor-C, a ligand for vascular endothelial growth factor receptor-3, is associated with autosomal dominant milroy-like primary lymphedema. Circ Res 112, 956, 2013.
23.
Brouillard P., Boon L., and Vikkula M. Genetics of lymphatic anomalies. J Clin Invest 124, 898, 2014.
24.
Petrova T.V., Karpanen T., Norrmén C., Mellor R., Tamakoshi T., Finegold D., Ferrell R., Kerjaschki D., Mortimer P., Ylä-Herttuala S., Miura N., and Alitalo K. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 10, 974, 2004.
25.
Witte M.H., Bernas M.J., Martin C.P., and Witte C.L. Lymphangiogenesis and lymphangiodysplasia : from molecular to clinical lymphology. Microsc Res Tech 145, 122, 2001.
26.
Blum K.S., Karaman S., Proulx S.T., Ochsenbein A.M., Luciani P., Leroux J.-C., Wolfrum C., and Detmar M. Chronic high-fat diet impairs collecting lymphatic vessel function in mice. PLoS One 9, e94713, 2014.
27.
Sawane M., Kayija K., Kidoya K., Takagi M., Muramatsu M., and Takakura M. Apelin inhibits diet-induced obesity by enhancing lymphatic and blood vessel integrity. Diabetes 62, 1970, 2013.
28.
Evans R., and Scilly C. Massive localized lymphedema : a case series and literature review. Can J Plast Surg 19, 30, 2011.
29.
Vasileiou A.-M., Bull R., Kitou D., Alexiadou K., Garvie N.J., and Coppack S.W. Oedema in obesity: role of structural lymphatic abnormalities. Int J Obes (Lond) 35, 1247, 2011.
30.
Norrmen C., Tammela T., Petrova T.V., and Alitalo K. Biological basis of therapeutic lymphangiogenesis. Circulation 123, 1335, 2011.
31.
Miller M., McDole J.R., and Newberry R.D. Microanatomy of the intestinal lymphatic system. Ann N Y Acad Sci 1207 Suppl 1, E21, 2011.
32.
Stacker S.A., Williams S.P., Karnezis T., Shayan R., Fox S.B., and Achen M.G. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev 14, 159, 2014.
33.
Tatin F., Taddei A., Weston A., Fuchs E., Devenport D., Tissir F., and Makinen T. Planar cell polarity protein Celsr1 regulates endothelial adherens junctions and directed cell rearrangements during valve morphogenesis. Dev Cell 26, 31, 2013.
34.
Dejana E., Orsenigo F., Molendini C., Baluk P., and McDonald D.M. Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. Cell Tissue Res 335, 17, 2009.
35.
Wiig H., Keskin D., and Kalluri R. Interaction between the extracellular matrix and lymphatics: consequences for lymphangiogenesis and lymphatic function. Matrix Biol 29, 645, 2010.
36.
Jackson D.G. The lymphatics revisited: new perspectives from the hyaluronan receptor LYVE-1. Trends Cardiovasc Med 13, 1, 2003.
37.
Banerji S., Ni J., Wang S., Clasper S., Su J., Tammi R., Jones M., and Jackson D.G. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144, 789, 1999.
38.
Jackson D.G., Prevo R., Clasper S., and Banerji S. LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol 22, 317, 2001.
39.
Platonova N., Miquel G., Regenfuss B., Taouji S., Cursiefen C., Chevet E., and Bikfalvi A. Evidence for the interaction of fibroblast growth factor-2 with the lymphatic endothelial cell marker LYVE-1. Blood 121, 1229, 2015.
40.
Francois M., Caprini A., Hosking B., Orsenigo F., Wilhelm D., Browne C., Paavonen K., Karnezis T., Shayan R., Downes M., Davidson T., Tutt D., Cheah K.S., Stacker S.A., Muscat G.E., Achen M.G., Dejana E., and Koopman P. Sox18 induces development of the lymphatic vasculature in mice. Nature 456, 643, 2008.
41.
Wu M., Du Y., Liu Y., He Y., Yang C., Wang W., and Gao F. Low molecular weight hyaluronan induces lymphangiogenesis through LYVE-1-mediated signaling pathways. PLoS One 9, e92857, 2014.
42.
Gale N.W., Prevo R., Espinosa J., Ferguson D.J., Dominguez M.G., Yancopoulos G.D., Thurston G., and Jackson D.G. Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1. Mol Cell Biol 27, 595, 2007.
43.
Carmeliet P., and Jain R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298, 2011.
44.
Asahara T., Murohara T., Sullivan A., Silver M., van der Zee R., Li T., Witzenbichler B., Schatteman G., and Isner J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964, 1997.
45.
Grenier G., Scimè A., Le Grand F., Asakura A., Perez-Iratxeta C., Andrade-Navarro M.A., Labosky P.A., and Rudnicki M.A. Resident endothelial precursors in muscle, adipose, and dermis contribute to postnatal vasculogenesis. Stem Cells 25, 3101, 2007.
46.
Ceradini D.J., and Gurtner G.C. Homing to hypoxia : HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc Med 15, 57, 2005.
47.
Gerhardt H., and Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314, 15, 2003.
48.
Hellstrom M., Phng L.K., Hofmann J.J., Wallgard E., Coultas L., Lindblom P., Alva J., Nilsson A.K., Karlsson L., Gaiano N., Yoon K., Rossant J., Iruela-Arispe M.L., Kalen M., Gerhardt H., and Betsholtz C. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776, 2007.
49.
Pedrosa A.R., Trindade A., Fernandes A.C., Carvalho C., Gigante J., Tavares A.T., Dieguez-Hurtado R., Yagita H., Adams R.H., and Duarte A. Endothelial Jagged1 antagonizes Dll4 regulation of endothelial branching and promotes vascular maturation downstream of Dll4/Notch1. Arterioscler Thromb Vasc Biol 35, 1134, 2015.
50.
Benedito R., Roca C., Sorensen I., Adams S., Gossler A., Fruttiger M., and Adams R.H. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124, 2009.
51.
Suchting S., and Eichmann A. Jagged gives endothelial tip cells an edge. Cell 137, 988, 2009.
52.
Tammela T., Zarkada G., Wallgard E., Murtomaki A., Suchting S., Wirzenius M., Waltari M., Hellstrom M., Schomber T., Peltonen R., Freitas C., Duarte A., Isoniemi H., Laakkonen P., Christofori G., Yla-Herttuala S., Shibuya M., Pytowski B., Eichmann A., Betsholtz C., and Alitalo K. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656, 2008.
53.
Benedito R., Rocha S.F., Woeste M., Zamykal M., Radtke F., Casanovas O., Duarte A., Pytowski B., and Adams R.H. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature 484, 110, 2012.
54.
Kaipainen A., Korhonen J., Mustonen T., van Hinsbergh V.W., Fang G.H., Dumont D., Breitman M., and Alitalo K. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A 92, 3566, 1995.
55.
Klotz L., Norman S., Vieira J.M., Masters M., Rohling M., Dubé K.N., Bollini S., Matsuzaki F., Carr C.A., and Riley P.R. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522, 62, 2015.
56.
Planas-Paz L., Strilic B., Goedecke A., Breier G., Fassler R., and Lammert E. Mechanoinduction of lymph vessel expansion. EMBO J 31, 788, 2012.
57.
Srinivasan R.S., Geng X., Yang Y., Wang Y., Mukatira S., Studer M., Porto M.P., Lagutin O., and Oliver G. The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev 24, 696, 2010.
58.
Srinivasan R.S., and Oliver G. Prox1 dosage controls the number of lymphatic endothelial cell progenitors and the formation of the lymphovenous valves. Genes Dev 25, 2187, 2011.
59.
Johnson N.C., Dillard M.E., Baluk P., McDonald D.M., Harvey N.L., Frase S.L., and Oliver G. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev 22, 3282, 2008.
60.
Srinivasan R.S., Escobedo N., Yang Y., Interiano A., Dillard M.E., Finkelstein D., Mukatira S., Gil H.J., Nurmi H., Alitalo K., and Oliver G. The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev 28, 2175, 2014.
61.
Karkkainen M.J., Haiko P., Sainio K., Partanen J., Taipale J., Petrova T.V., Jeltsch M., Jackson D.G., Talikka M., Rauvala H., Betsholtz C., and Alitalo K. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5, 74, 2004.
62.
Astin J.W., Haggerty M.J., Okuda K.S., Le Guen L., Misa J.P., Tromp A., Hogan B.M., Crosier K.E., and Crosier P.S. Vegfd can compensate for loss of Vegfc in zebrafish facial lymphatic sprouting. Development 141, 2680, 2014.
63.
Bos F.L., Caunt M., Peterson-Maduro J., Planas-Paz L., Kowalski J., Karpanen T., van Impel A., Tong R., Ernst J.A., Korving J., van Es J.H., Lammert E., Duckers H.J., and Schulte-Merker S. CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ Res 109, 486, 2011.
64.
Le Guen L., Karpanen T., Schulte D., Harris N.C., Koltowska K., Roukens G., Bower N.I., van Impel A., Stacker S.A., Achen M.G., Schulte-Merker S., and Hogan B.M. Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development 141, 1239, 2014.
65.
Norrmén C., Ivanov K.I., Cheng J., Zangger N., Delorenzi M., Jaquet M., Miura N., Puolakkainen P., Horsley V., Hu J., Augustin H.G., Ylä-Herttuala S., Alitalo K., and Petrova T.V. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol 185, 439, 2009.
66.
Sabine A., Agalarov Y., Maby-El Hajjami H., Jaquet M., Hägerling R., Pollmann C., Bebber D., Pfenniger A., Miura N., Dormond O., Calmes J.-M., Adams R.H., Mäkinen T., Kiefer F., Kwak B.R., and Petrova T.V. Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev Cell 22, 430, 2012.
67.
Shimoda H. Immunohistochemical demonstration of angiopoietin-2 in lymphatic vascular development. Histochem. Cell Biol 131, 231, 2009.
68.
Shimoda H., Bernas M.J., Witte M.H., Gale N.W., Yancopoulos G.D., and Kato S. Abnormal recruitment of periendothelial cells to lymphatic capillaries in digestive organs of angiopoietin-2-deficient mice. Cell Tissue Res 328, 329, 2007.
69.
Song S.H., Kim K.L., Lee K.A., and Suh W. Tie1 regulates the Tie2 agonistic role of angiopoietin-2 in human lymphatic endothelial cells. Biochem Biophys Res Commun 419, 281, 2012.
70.
Cao Y. Multifarious functions of PDGFs and PDGFRs in tumor growth and metastasis. Trends Mol Med 19, 460, 2013.
71.
Miyazaki H., Yoshimatsu Y., Akatsu Y., Mishima K., Fukayama M., Watabe T., and Miyazono K. Expression of platelet-derived growth factor receptor β is maintained by Prox1 in lymphatic endothelial cells and is required for tumor lymphangiogenesis. Cancer Sci 105, 1116, 2014.
72.
Andrae J., Gallini R., and Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22, 1276, 2008.
73.
Niessen K., Zhang G., Ridgway J.B., Chen H., and Yan M. ALK1 signaling regulates early postnatal lymphatic vessel development. Blood 115, 1654, 2010.
74.
Cao R., Bjorndahl M.A., Gallego M.I., Chen S., Religa P., Hansen A.J., and Cao Y. Hepatocyte growth factor is a lymphangiogenic factor with an indirect mechanism of action. Blood 107, 3531, 2006.
75.
Kajiya K., Hirakawa S., Ma B., Drinnenberg I., and Detmar M. Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J 24, 2885, 2005.
76.
Saito Y., Nakagami H., Kaneda Y., and Morishita R. Lymphedema and therapeutic lymphangiogenesis. Biomed Res Int 2013, 804675, 2013.
77.
Zampell J.C., Yan A., Avraham T., Daluvoy S., Weitman E.S., and Mehrara B.J. HIF-1alpha coordinates lymphangiogenesis during wound healing and in response to inflammation. FASEB J 26, 1027, 2012.
78.
Caprara V., Scappa S., Garrafa E., Di Castro V., Rosanò L., Bagnato A., and Spinella F. Endothelin-1 regulates hypoxia-inducible factor-1α and -2α stability through prolyl hydroxylase domain 2 inhibition in human lymphatic endothelial cells. Life Sci 118, 185, 2014.
79.
Niessen K., Zhang G., Ridgway J.B., Chen H., Kolumam G., Siebel C.W., and Yan M. The Notch1-Dll4 signaling pathway regulates mouse postnatal lymphatic development. Blood 118, 1989, 2011.
80.
Wang Y., Nakayama M., Pitulescu M.E., Schmidt T.S., Bochenek M.L., Sakakibara A., Adams S., Davy A., Deutsch U., Lüthi U., Barberis A., Benjamin L.E., Mäkinen T., Nobes C.D., and Adams R.H. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483, 2010.
81.
Kang J., Yoo J., Lee S., Tang W., Aguilar B., Ramu S., Choi I., Otu H.H., Shin J.W., Dotto G.P., Koh C.J., Detmar M., and Hong Y.K. An exquisite cross-control mechanism among endothelial cell fate regulators directs the plasticity and heterogeneity of lymphatic endothelial cells. Blood 116, 140, 2010.
82.
Poldervaart M.T., Gremmels H., van Deventer K., Fledderus J.O., Oner F.C., Verhaar M.C., Dhert W.J.A., and Alblas J. Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture. J Control Release 184, 58, 2014.
83.
Kusuma S., Shen Y.-I., Hanjaya-Putra D., Mali P., Cheng L., and Gerecht S. Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc Natl Acad Sci U S A 110, 12601, 2013.
84.
Wanjare M., Kusuma S., and Gerecht S. Perivascular cells in blood vessel regeneration. Biotechnol J 8, 434, 2013.
85.
Shin'oka T., Matsumura G., Hibino N., Naito Y., Watanabe M., Konuma T., Sakamoto T., Nagatsu M., and Kurosawa H. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 129, 1330, 2005.
86.
Hibino N., McGillicuddy E., Matsumura G., Ichihara Y., Naito Y., Breuer C., and Shinoka T. Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg 139, 431, 2010.
87.
Byrom M.J., Bannon P.G., White G.H., and Ng M.K.C. Animal models for the assessment of novel vascular conduits. J Vasc Surg 52, 176, 2010.
88.
Hibino N., Yi T., Duncan D.R., Rathore A., Dean E., Naito Y., Dardik A., Kyriakides T., Madri J., Pober J.S., Shinoka T., and Breuer C.K. A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts. FASEB J 25, 4253, 2011.
89.
Hibino N., Mejias D., Pietris N., Dean E., Yi T., Best C., Shinoka T., and Breuer C. The innate immune system contributes to tissue-engineered vascular graft performance. FASEB J 29, 2431, 2015.
90.
Zwingenberger S., Yao Z., Jacobi A., Vater C., Valladares R.D., Li C., Nich C., Rao A.J., Christman J.E., Goodman S.B., and Stiehler M. Enhancement of BMP-2 induced bone regeneration by SDF-1 a mediated stem cell recruitment. Tissue Eng Part A 20, 810, 2014.
91.
van der Pouw Kraan T.C., van der Laan A.M., Piek J.J., and Horrevoets A.G. Surfing the data tsunami, a bioinformatic dissection of the proangiogenic monocyte. Vasc Pharmacol 56, 297, 2012.
92.
De Falco E., Porcelli D., Torella A.R., Straino S., Iachininoto M.G., Orlandi A., Truffa S., Biglioli P., Napolitano M., Capogrossi M.C., and Pesce M. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 104, 3472, 2015.
93.
Ghadge S.K., Mühlstedt S., Ozcelik C., and Bader M. SDF-1α as a therapeutic stem cell homing factor in myocardial infarction. Pharmacol Ther 129, 97, 2011.
94.
Ward N.L., and Dumont D.J. The angiopoietins and Tie2/Tek: adding to the complexity of cardiovascular development. Semin Cell Dev Biol 13, 19, 2002.
95.
Irvine D.J., Stachowiak A.N., and Hori Y. Lymphoid tissue engineering: invoking lymphoid tissue neogenesis in immunotherapy and models of immunity. Semin Immunol 20, 137, 2008.
96.
Kerjaschki D., Huttary N., Raab I., Regele H., Bojarski-Nagy K., Bartel G., Kröber S.M., Greinix H., Rosenmaier A., Karlhofer F., Wick N., and Mazal P.R. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 12, 230, 2006.
97.
Jiang S., Bailey A.S., Goldman D.C., Swain J.R., Wong M.H., Streeter P.R., and Fleming W.H. Hematopoietic stem cells contribute to lymphatic endothelium. PLoS One 3, e3812, 2008.
98.
He Y., Rajantie I., Ilmonen M., Makinen T., Karkkainen M.J., Haiko P., Salven P., and Alitalo K. Advances in brief preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res 8, 3737, 2004.
99.
Kim H., Kataru R.P., and Koh G.Y. Inflammation-associated lymphangiogenesis : a double-edged sword? J Clin Invest 124, 936, 2014.
100.
Ng C.P., Helm C.L., and Swartz M.A. Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc Res 68, 258, 2004.
101.
Visuri M.T., Honkonen K.M., Hartiala P., Tervala T.V., Halonen P.J., Junkkari H., Knuutinen N., Ylä-Herttuala S., Alitalo K.K., and Saarikko A.M. VEGF-C and VEGF-C156S in the pro-lymphangiogenic growth factor therapy of lymphedema: a large animal study. Angiogenesis 18, 313, 2015.
102.
Zhang G., Brady J., Liang W.-C., Wu Y., Henkemeyer M., and Yan M. EphB4 forward signalling regulates lymphatic valve development. Nat Commun 6, 6625, 2015.
103.
Jin D., Harada K., Ohnishi S., Yamahara K., Kangawa K., and Nagaya N. Adrenomedullin induces lymphangiogenesis and ameliorates secondary lymphoedema. Cardiovasc Res 80, 339, 2008.
104.
Weitman E., Cuzzone D., and Mehrara B.J. Tissue engineering and regeneration of lymphatic structures. Future Oncol 9, 1365, 2014.
105.
Goldman J., Le T.X., Skobe M., and Swartz M.A. Overexpression of VEGF-C causes transient lymphatic hyperplasia but not increased lymphangiogenesis in regenerating skin. Circ Res 96, 1193, 2005.
106.
Marino D., Luginbühl J., Scola S., Meuli M., and Reichmann E. Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med 6, 221, 2014.
107.
Clavin N.W., Avraham T., Fernandez J., Daluvoy S.V., Soares M.A., Chaudhry A., and Mehrara B.J. TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol Circ Physiol 295, H2113, 2008.
108.
Coso S., Bovay E., and Petrova T.V. Pressing the right buttons: signaling in lymphangiogenesis. Blood 123, 2614, 2014.
109.
Dai T.T., Jiang Z.H., Li S.L., Zhou G.D., Kretlow J.D., Cao W.G., Liu W., and Cao Y.L. Reconstruction of lymph vessel by lymphatic endothelial cells combined with polyglycolic acid scaffolds: a pilot study. J Biotechnol 150, 182, 2010.
110.
Helm C.L., Zisch A., and Swartz M.A. Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-collagen matrices with interstitial flow. Biotechnol Bioeng 96, 167, 2007.
111.
Lutter S., Xie S., Tatin F., and Makinen T. Smooth muscle-endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation. J Cell Biol 197, 837, 2012.
112.
Albrecht I., and Christofori G. Molecular mechanisms of lymphangiogenesis in development and cancer. Int J Dev Biol 55, 483, 2011.
113.
McHale N.G., and Meharg M.K. Co-ordination of pumping in isolated bovine lymphatic vessels. J Physiol 450, 503, 1992.
114.
Giese C., Demmler C.D., Ammer R., Hartmann S., Lubitz A., Miller L., Müller R., and Marx U. A human lymph node in vitro—challenges and progress. Artif Organs 30, 803, 2006.
115.
Kuzin I., Sun H., Moshkani S., Feng C., Mantalaris A., Wu J.H., and Bottaro A. Long-term immunologically competent human peripheral lymphoid tissue cultures in a 3D bioreactor. Biotechnol Bioeng 108, 1430, 2011.
Information & Authors
Information
Published In
Tissue Engineering Part B: Reviews
Volume 22 • Issue Number 1 • February 2016
Pages: 1 - 14
PubMed: 26204330
Copyright
Copyright 2016, Mary Ann Liebert, Inc.
History
Published in print: February 2016
Published ahead of print: 18 November 2015
Published online: 11 November 2015
Published ahead of production: 23 July 2015
Accepted: 21 July 2015
Received: 18 May 2015
Topics
Authors
Disclosure Statement
No competing financial interests exist.
Metrics & Citations
Metrics
Citations
Export Citation
Export citation
Select the format you want to export the citations of this publication.
View Options
Get Access
Access content
To read the fulltext, please use one of the options below to sign in or purchase access.⚠ Society Access
If you are a member of a society that has access to this content please log in via your society website and then return to this publication.