Research Article
No access
Published Online: 20 July 2011

Raman Spectroscopy: A Noninvasive Analysis Tool for the Discrimination of Human Skin Cells

Publication: Tissue Engineering Part C: Methods
Volume 17, Issue Number 10

Abstract

Noninvasive monitoring of tissue-engineered (TE) constructs during their in vitro maturation or postimplantation in vivo is highly relevant for graft evaluation. However, traditional methods for studying cell and matrix components in engineered tissues such as histology, immunohistochemistry, or biochemistry require invasive tissue processing, resulting in the need to sacrifice of TE constructs. Raman spectroscopy offers the unique possibility to analyze living cells label-free in situ and in vivo solely based on their phenotype-specific biochemical fingerprint. In this study, we aimed to determine the applicability of Raman spectroscopy for the noninvasive identification and spectral separation of primary human skin fibroblasts, keratinocytes, and melanocytes, as well as immortalized keratinocytes (HaCaT cells). Multivariate analysis of cell-type-specific Raman spectra enabled the discrimination between living primary and immortalized keratinocytes. We further noninvasively distinguished between fibroblasts, keratinocytes, and melanocytes. Our findings are especially relevant for the engineering of in vitro skin models and for the production of artificial skin, where both the biopsy and the transplant consist of several cell types. To realize a reproducible quality of TE skin, the determination of the purity of the cell populations as well as the detection of potential molecular changes are important. We conclude therefore that Raman spectroscopy is a suitable tool for the noninvasive in situ quality control of cells used in skin tissue engineering applications.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Langer R.Vacanti J.P. Tissue engineeringScience2609201993. 1. Langer, R., and Vacanti, J.P. Tissue engineering. Science 260, 920, 1993.
2.
Organisation for Economic Co-operation and Development. Guidance Document for the Conduct of Skin Absorption Studies OECD Series on Testing and Assessment Number 28, 2004www.oecd.org/officialdocuments/displaydocumentpdf?cote=env/jm/mono(2004)2&doclanguage=en 2. Organisation for Economic Co-operation and Development. Guidance Document for the Conduct of Skin Absorption Studies OECD Series on Testing and Assessment Number 28, 2004. Available at www.oecd.org/officialdocuments/displaydocumentpdf?cote=env/jm/mono(2004)2&doclanguage=en
3.
European Union. Directive 2003/15/EC of the European Parliament and of the Council of 27 February 2003 amending Council Directive 76/768/EEC on the approximation of the laws of the Member States relating to cosmetic productsOfficial Journal of the European Union46262003. 3. European Union. Directive 2003/15/EC of the European Parliament and of the Council of 27 February 2003 amending Council Directive 76/768/EEC on the approximation of the laws of the Member States relating to cosmetic products. Official Journal of the European Union 46, 26, 2003.
4.
Jansson K.Kratz G.Haegerstrand A. Characterization of a new in vitro model for studies of reepithelialization in human partial thickness woundsIn Vitro Cell Dev Biol Anim325341996. 4. Jansson, K., Kratz, G., and Haegerstrand, A. Characterization of a new in vitro model for studies of reepithelialization in human partial thickness wounds. In Vitro Cell Dev Biol Anim 32, 534, 1996.
5.
Maier K.Schmitt-Landgraf R.Siegemund B. Development of an in vitro test system with human skin cells for evaluation of phototoxicityToxicol In Vitro54571991. 5. Maier, K., Schmitt-Landgraf, R., and Siegemund, B. Development of an in vitro test system with human skin cells for evaluation of phototoxicity. Toxicol In Vitro 5, 457, 1991.
6.
Roguet R.Cohen C.Dossou K.G.Rougier A. Episkin, a reconstituted human epidermis for assessing in vitro the irritancy of topically applied compoundsToxicol In Vitro82831994. 6. Roguet, R., Cohen, C., Dossou, K.G., and Rougier, A. Episkin, a reconstituted human epidermis for assessing in vitro the irritancy of topically applied compounds. Toxicol In Vitro 8, 283, 1994.
7.
Simonetti O.Hoogstraate A.J.Bialik W.Kempenaar J.A.Schrijvers A.H.Bodde H.E.Ponec M. Visualization of diffusion pathways across the stratum corneum of native and in-vitro-reconstructed epidermis by confocal laser scanning microscopyArch Dermatol Res2874651995. 7. Simonetti, O., Hoogstraate, A.J., Bialik, W., Kempenaar, J.A., Schrijvers, A.H., Bodde, H.E., and Ponec, M. Visualization of diffusion pathways across the stratum corneum of native and in-vitro-reconstructed epidermis by confocal laser scanning microscopy. Arch Dermatol Res 287, 465, 1995.
8.
Schenke-Layland K.Riemann I.Damour O.Stock U.A.König K. Two-photon microscopes and in vivo multiphoton tomographs—powerful diagnostic tools for tissue engineering and drug deliveryAdv Drug Deliv Rev588782006. 8. Schenke-Layland, K., Riemann, I., Damour, O., Stock, U.A., and König, K. Two-photon microscopes and in vivo multiphoton tomographs—powerful diagnostic tools for tissue engineering and drug delivery. Adv Drug Deliv Rev 58, 878, 2006.
9.
Schenke-Layland K. Non-invasive multiphoton imaging of extracellular matrix structuresJ Biophotonics14512008. 9. Schenke-Layland, K. Non-invasive multiphoton imaging of extracellular matrix structures. J Biophotonics 1, 451, 2008.
10.
Raman C.V.Krishnan K.S. A new type of secondary radiationNature1215011928. 10. Raman, C.V., and Krishnan, K.S. A new type of secondary radiation. Nature 121, 501, 1928.
11.
Schrader B. Infrared and Raman SpectroscopyMethods and ApplicationsWeinheimWiley-VCH1995. 11. Schrader, B. Infrared and Raman Spectroscopy. Methods and Applications. Weinheim: Wiley-VCH, 1995.
12.
Bazalgette Courrèges-Lacoste G.Ahlers B.Pérez F.R. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to MarsSpectrochim Acta A6810232007. 12. Bazalgette Courrèges-Lacoste, G., Ahlers, B., and Pérez, F.R. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars. Spectrochim Acta A 68, 1023, 2007.
13.
Notingher I.Hench L.L. Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitroExpert Rev Med Devices32152006. 13. Notingher, I., and Hench, L.L. Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro. Expert Rev Med Devices 3, 215, 2006.
14.
Pudlas M.Koch S.Bolwien C.Walles H. Raman spectroscopy as a tool for quality and sterility analysis for tissue engineering applications like cartilage transplantsInt J Artif Organs332282010. 14. Pudlas, M., Koch, S., Bolwien, C., and Walles, H. Raman spectroscopy as a tool for quality and sterility analysis for tissue engineering applications like cartilage transplants. Int J Artif Organs 33, 228, 2010.
15.
Jeon K.W.International Review of Cytology: A Survey of Cell BiologySan DiegoAcademic Press1999. 15. Jeon, K.W. International Review of Cytology: A Survey of Cell Biology. San Diego: Academic Press, 1999.
16.
Cortes C.Vapnik V. Support-vector networksMach Learn202731995. 16. Cortes, C., and Vapnik, V. Support-vector networks. Mach Learn 20, 273, 1995.
17.
Bensalah K.Fleureau J.Rolland D.Lavastre O.Rioux-Leclercq N.Guillé F.Patard J.-J.Senhadji L.de Crevoisier R. Raman spectroscopy: a novel experimental approach to evaluating renal tumoursEur Urol586022010. 17. Bensalah, K., Fleureau, J., Rolland, D., Lavastre, O., Rioux-Leclercq, N., Guillé, F., Patard, J.-J., Senhadji, L., and de Crevoisier, R. Raman spectroscopy: a novel experimental approach to evaluating renal tumours. Eur Urol 58, 602, 2010.
18.
Mahadevan-Jansen A.Mitchell M.F.Ramanujam N.Malpica A.Thomsen S.Utzinger U.Richards-Kortum R. Near-infrared Raman spectroscopy for in vitro detection of cervical precancersPhotochem Photobiol681231998. 18. Mahadevan-Jansen, A., Mitchell, M.F., Ramanujam, N., Malpica, A., Thomsen, S., Utzinger, U., and Richards-Kortum, R. Near-infrared Raman spectroscopy for in vitro detection of cervical precancers. Photochem Photobiol 68, 123, 1998.
19.
De Gelder J.De Gussem K.Vandenabeele P.Moens L. Reference database of Raman spectra of biological moleculesJ Raman Spectrosc3811332007. 19. De Gelder, J., De Gussem, K., Vandenabeele, P., and Moens, L. Reference database of Raman spectra of biological molecules. J Raman Spectrosc 38, 1133, 2007.
20.
Notingher I.Jell G.Lohbauer U.Salih V.Hench L.L. In situ non-invasive spectral discrimination between bone cell phenotypes used in tissue engineeringJ Cell Biochem9211802004. 20. Notingher, I., Jell, G., Lohbauer, U., Salih, V., and Hench, L.L. In situ non-invasive spectral discrimination between bone cell phenotypes used in tissue engineering. J Cell Biochem 92, 1180, 2004.
21.
Movasaghi Z.Rehman S.Rehman I.U. Raman spectroscopy of biological tissuesAppl Spectrosc Rev424932007. 21. Movasaghi, Z., Rehman, S., and Rehman, I.U. Raman spectroscopy of biological tissues. Appl Spectrosc Rev 42, 493, 2007.
22.
Singh G.P.Creely C.M.Volpe G.Grotsch H.Petrov D. Real-time detection of hyperosmotic stress response in optically trapped single yeast cells using Raman microspectroscopyAnal Chem7725642005. 22. Singh, G.P., Creely, C.M., Volpe, G., Grotsch, H., and Petrov, D. Real-time detection of hyperosmotic stress response in optically trapped single yeast cells using Raman microspectroscopy. Anal Chem 77, 2564, 2005.
23.
Huang Z.McWilliams A.Lui H.McLean D.I.Lam S.Zeng H. Near-infrared Raman spectroscopy for optical diagnosis of lung cancerInt J Cancer10710472003. 23. Huang, Z., McWilliams, A., Lui, H., McLean, D.I., Lam, S., and Zeng, H. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int J Cancer 107, 1047, 2003.
24.
Gotter B.Faubel W.Neubert R.H. Optical methods for measurements of skin penetrationSkin Pharmacol Physiol211562008. 24. Gotter, B., Faubel, W., and Neubert, R.H. Optical methods for measurements of skin penetration. Skin Pharmacol Physiol 21, 156, 2008.
25.
Frank C.J.McCreery R.L.Redd D.C. Raman spectroscopy of normal and diseased human breast tissuesAnal Chem677771995. 25. Frank, C.J., McCreery, R.L., and Redd, D.C. Raman spectroscopy of normal and diseased human breast tissues. Anal Chem 67, 777, 1995.
26.
Frushour B.G.Koenig J.L. Raman scattering of collagen, gelatin, and elastinBiopolymers143791975. 26. Frushour, B.G., and Koenig, J.L. Raman scattering of collagen, gelatin, and elastin. Biopolymers 14, 379, 1975.
27.
Larraona-Puy M.Ghita A.Zoladek A.Perkins W.Varma S.Leach I.H.Koloydenko A.A.Williams H.Notingher I. Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinomaJ Biomed Opt140540312009. 27. Larraona-Puy, M., Ghita, A., Zoladek, A., Perkins, W., Varma, S., Leach, I.H., Koloydenko, A.A., Williams, H., and Notingher, I. Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma. J Biomed Opt 14, 054031, 2009.
28.
Walton A.Deveney M.Koenig J. Raman spectroscopy of calcified tissueCalcif Tissue Int61621970. 28. Walton, A., Deveney, M., and Koenig, J. Raman spectroscopy of calcified tissue. Calcif Tissue Int 6, 162, 1970.
29.
Myllyharju J. Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesisMatrix Biol22152003. 29. Myllyharju, J. Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol 22, 15, 2003.
30.
Sun T.Haycock J.Macneil S. In situ image analysis of interactions between normal human keratinocytes and fibroblasts cultured in three-dimensional fibrin gelsBiomaterials2734592006. 30. Sun, T., Haycock, J., and Macneil, S. In situ image analysis of interactions between normal human keratinocytes and fibroblasts cultured in three-dimensional fibrin gels. Biomaterials 27, 3459, 2006.
31.
Notingher I.Green C.Dyer C.Perkins E.Hopkins N.Lindsay C.Hench L.L. Discrimination between ricin and sulphur mustard toxicity in vitro using Raman spectroscopyJ Royal Soc Interface1792004. 31. Notingher, I., Green, C., Dyer, C., Perkins, E., Hopkins, N., Lindsay, C., and Hench, L.L. Discrimination between ricin and sulphur mustard toxicity in vitro using Raman spectroscopy. J Royal Soc Interface 1, 79, 2004.
32.
Wessel S.Gniadecka M.Jemec G.B.Wulf H.C. Hydration of human nails investigated by NIR-FT-Raman spectroscopyBiochim Biophys Acta14332101999. 32. Wessel, S., Gniadecka, M., Jemec, G.B., and Wulf, H.C. Hydration of human nails investigated by NIR-FT-Raman spectroscopy. Biochim Biophys Acta 1433, 210, 1999.
33.
Huang Z.Lui H.Chen X.K.Alajlan A.McLean D.I.Zeng H. Raman spectroscopy of in vivo cutaneous melaninJ Biomed Opt911982004. 33. Huang, Z., Lui, H., Chen, X.K., Alajlan, A., McLean, D.I., and Zeng, H. Raman spectroscopy of in vivo cutaneous melanin. J Biomed Opt 9, 1198, 2004.
34.
Coulie P.G.Brichard V.Van Pel A.Wölfel T.Schneider J.Traversari C.Mattei S.De Plaen E.Lurquin C.Szikora J.P.Renauld J.C.Boon T. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomasJ Exp Med180351994. 34. Coulie, P.G., Brichard, V., Van Pel, A., Wölfel, T., Schneider, J., Traversari, C., Mattei, S., De Plaen, E., Lurquin, C., Szikora, J.P., Renauld, J.C., and Boon, T. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 180, 35, 1994.
35.
Hud N.V.Milanovich F.P.Balhorn R. Evidence of novel secondary structure in DNA-bound protamine is revealed by Raman spectroscopyBiochemistry3375281994. 35. Hud, N.V., Milanovich, F.P., and Balhorn, R. Evidence of novel secondary structure in DNA-bound protamine is revealed by Raman spectroscopy. Biochemistry 33, 7528, 1994.
36.
Gao X.Butler I.S.Kremer R. A near-infrared Fourier transform Raman spectroscopy of epidermal keratinocytes: changes in the protein-DNA structure following malignant transformationSpectrochim Acta A61272005. 36. Gao, X., Butler, I.S., and Kremer, R. A near-infrared Fourier transform Raman spectroscopy of epidermal keratinocytes: changes in the protein-DNA structure following malignant transformation. Spectrochim Acta A 61, 27, 2005.
37.
Andrade P.Bitar R.Yassoyama K.Martinho H.Santo A.Bruno P.Martin A. Study of normal colorectal tissue by FT-Raman spectroscopyAnal Bioanal Chem38716432007. 37. Andrade, P., Bitar, R., Yassoyama, K., Martinho, H., Santo, A., Bruno, P., and Martin, A. Study of normal colorectal tissue by FT-Raman spectroscopy. Anal Bioanal Chem 387, 1643, 2007.
38.
Gentleman E.Swain R.J.Evans N.D.Boonrungsiman S.Jell G.Ball M.D.Shean T.A.V.Oyen M.L.Porter A.Stevens M.M. Comparative materials differences revealed in engineered bone as a function of cell-specific differentiationNat Mater87632009. 38. Gentleman, E., Swain, R.J., Evans, N.D., Boonrungsiman, S., Jell, G., Ball, M.D., Shean, T.A.V., Oyen, M.L., Porter, A., and Stevens, M.M. Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation. Nat Mater 8, 763, 2009.
39.
Koljenović S.Bakker Schut T.C.van Meerbeeck J.P.Maat A.P.W.M.Burgers S.A.Zondervan P.E.Kros J.M.Puppels G.J. Raman microspectroscopic mapping studies of human bronchial tissueJ Biomed Opt911872004. 39. Koljenović, S., Bakker Schut, T.C., van Meerbeeck, J.P., Maat, A.P.W.M., Burgers, S.A., Zondervan, P.E., Kros, J.M., and Puppels, G.J. Raman microspectroscopic mapping studies of human bronchial tissue. J Biomed Opt 9, 1187, 2004.
40.
Krafft C.Ramoji A.A.Bielecki C.Vogler N.Meyer T.Akimov D.Rösch P.Schmitt M.Dietzek B.Petersen I.Stallmach A.Popp J. A comparative Raman and CARS imaging study of colon tissueJ Biophotonics23032009. 40. Krafft, C., Ramoji, A.A., Bielecki, C., Vogler, N., Meyer, T., Akimov, D., Rösch, P., Schmitt, M., Dietzek, B., Petersen, I., Stallmach, A., and Popp, J. A comparative Raman and CARS imaging study of colon tissue. J Biophotonics 2, 303, 2009.
41.
Penel G.Delfosse C.Descamps M.Leroy G. Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopyBone368932005. 41. Penel, G., Delfosse, C., Descamps, M., and Leroy, G. Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone 36, 893, 2005.
42.
Noh M.S.Jun B.-H.Kim S.Kang H.Woo M.-A.Minai-Tehrani A.Kim J.-E.Kim J.Park J.Lim H.-T.Park S.-C.Hyeon T.Kim Y.-K.Jeong D.H.Lee Y.-S.Cho M.-H. Magnetic surface-enhanced Raman spectroscopic (M-SERS) dots for the identification of bronchioalveolar stem cells in normal and lung cancer miceBiomaterials3039152009. 42. Noh, M.S., Jun, B.-H., Kim, S., Kang, H., Woo, M.-A., Minai-Tehrani, A., Kim, J.-E., Kim, J., Park, J., Lim, H.-T., Park, S.-C., Hyeon, T., Kim, Y.-K., Jeong, D.H., Lee, Y.-S., and Cho, M.-H. Magnetic surface-enhanced Raman spectroscopic (M-SERS) dots for the identification of bronchioalveolar stem cells in normal and lung cancer mice. Biomaterials 30, 3915, 2009.
43.
Molckovsky A.Song L.-M.Shim M.G.Marcon N.E.Wilson B.C. Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polypsGastrointest Endosc573962003. 43. Molckovsky, A., Song, L.-M., Shim, M.G., Marcon, N.E., and Wilson, B.C. Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps. Gastrointest Endosc 57, 396, 2003.
44.
Lyng F.M.Faolain E.O.Conroy J.Meade A.D.Knief P.Duffy B.Hunter M.B.Byrne J.M.Kelehan P.Byrne H.J. Vibrational spectroscopy for cervical cancer pathology, from biochemical analysis to diagnostic toolExp Mol Pathol821212007. 44. Lyng, F.M., Faolain, E.O., Conroy, J., Meade, A.D., Knief, P., Duffy, B., Hunter, M.B., Byrne, J.M., Kelehan, P., and Byrne, H.J. Vibrational spectroscopy for cervical cancer pathology, from biochemical analysis to diagnostic tool. Exp Mol Pathol 82, 121, 2007.
45.
Yu C.Gestl E.Eckert K.Allara D.Irudayaraj J. Characterization of human breast epithelial cells by confocal Raman microspectroscopyCancer Detect Prev305152006. 45. Yu, C., Gestl, E., Eckert, K., Allara, D., and Irudayaraj, J. Characterization of human breast epithelial cells by confocal Raman microspectroscopy. Cancer Detect Prev 30, 515, 2006.
46.
Gniadecka M.Wulf H.C.Nymark Mortensen N.Faurskov Nielsen O.Christensen D.H. Diagnosis of basal cell carcinoma by Raman spectroscopyJ Raman Spectrosc281251997. 46. Gniadecka, M., Wulf, H.C., Nymark Mortensen, N., Faurskov Nielsen, O., and Christensen, D.H. Diagnosis of basal cell carcinoma by Raman spectroscopy. J Raman Spectrosc 28, 125, 1997.
47.
Nijssen A.Bakker Schut T.C.Heule F.Caspers P.J.Hayes D.P.Neumann M.H.Puppels G.J. Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopyJ Invest Dermatol119642002. 47. Nijssen, A., Bakker Schut, T.C., Heule, F., Caspers, P.J., Hayes, D.P., Neumann, M.H., and Puppels, G.J. Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy. J Invest Dermatol 119, 64, 2002.
48.
Bernard G.Auger M.Soucy J.Pouliot R. Physical characterization of the stratum corneum of an in vitro psoriatic skin model by ATR-FTIR and Raman spectroscopiesBiochim Biophys Acta177013172007. 48. Bernard, G., Auger, M., Soucy, J., and Pouliot, R. Physical characterization of the stratum corneum of an in vitro psoriatic skin model by ATR-FTIR and Raman spectroscopies. Biochim Biophys Acta 1770, 1317, 2007.
49.
Caspers P.J.Lucassen G.W.Carter E.A.Bruining H.A.Puppels G.J. In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profilesJ Invest Dermatol1164342001. 49. Caspers, P.J., Lucassen, G.W., Carter, E.A., Bruining, H.A., and Puppels, G.J. In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. J Invest Dermatol 116, 434, 2001.
50.
El Ghalbzouri A.Commandeur S.Rietveld M.H.Mulder A.A.Willemze R. Replacement of animal-derived collagen matrix by human fibroblast-derived dermal matrix for human skin equivalent productsBiomaterials30712009. 50. El Ghalbzouri, A., Commandeur, S., Rietveld, M.H., Mulder, A.A., and Willemze, R. Replacement of animal-derived collagen matrix by human fibroblast-derived dermal matrix for human skin equivalent products. Biomaterials 30, 71, 2009.
51.
Patlolla R.R.Desai P.R.Belay K.Singh M.S. Translocation of cell penetrating peptide engrafted nanoparticles across skin layersBiomaterials3155982010. 51. Patlolla, R.R., Desai, P.R., Belay, K., and Singh, M.S. Translocation of cell penetrating peptide engrafted nanoparticles across skin layers. Biomaterials 31, 5598, 2010.
52.
Perna G.Lastella M.Lasalvia M.Mezzenga E.Capozzi V. Raman spectroscopy and atomic force microscopy study of cellular damage in human keratinocytes treated with HgCl2J Mol Struct8341822007. 52. Perna, G., Lastella, M., Lasalvia, M., Mezzenga, E., and Capozzi, V. Raman spectroscopy and atomic force microscopy study of cellular damage in human keratinocytes treated with HgCl2. J Mol Struct 834, 182, 2007.
53.
Qian J.Jiang L.Cai F.Wang D.He S. Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imagingBiomaterials3216012011. 53. Qian, J., Jiang, L., Cai, F., Wang, D., and He, S. Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging. Biomaterials 32, 1601, 2011.
54.
Meade A.Lyng F.Knief P.Byrne H. Growth substrate induced functional changes elucidated by FTIR and Raman spectroscopy in in–vitro cultured human keratinocytesAnal Bioanal Chem38717172007. 54. Meade, A., Lyng, F., Knief, P., and Byrne, H. Growth substrate induced functional changes elucidated by FTIR and Raman spectroscopy in in–vitro cultured human keratinocytes. Anal Bioanal Chem 387, 1717, 2007.
55.
Bonnier F.Meade A.D.Merzha S.Knief P.Bhattacharya K.Lyng F.M.Byrne H.J. Three dimensional collagen gels as a cell culture matrix for the study of live cells by Raman spectroscopyAnalyst13516972010. 55. Bonnier, F., Meade, A.D., Merzha, S., Knief, P., Bhattacharya, K., Lyng, F.M., and Byrne, H.J. Three dimensional collagen gels as a cell culture matrix for the study of live cells by Raman spectroscopy. Analyst 135, 1697, 2010.
56.
Donfack P.Rehders M.Brix K.Boukamp P.Materny A. Micro Raman spectroscopy for monitoring alterations between human skin keratinocytes HaCaT and their tumorigenic derivatives A5RT3—toward a Raman characterization of a skin carcinoma modelJ Raman Spectrosc41162010. 56. Donfack, P., Rehders, M., Brix, K., Boukamp, P., and Materny, A. Micro Raman spectroscopy for monitoring alterations between human skin keratinocytes HaCaT and their tumorigenic derivatives A5RT3—toward a Raman characterization of a skin carcinoma model. J Raman Spectrosc 41, 16, 2010.
57.
Jess P.R.Garces-Chavez V.Smith D.Mazilu M.Paterson L.Riches A.Herrington C.S.Sibbett W.Dholakia K. Dual beam fibre trap for Raman micro-spectroscopy of single cellsOpt Expr1457792006. 57. Jess, P.R., Garces-Chavez, V., Smith, D., Mazilu, M., Paterson, L., Riches, A., Herrington, C.S., Sibbett, W., and Dholakia, K. Dual beam fibre trap for Raman micro-spectroscopy of single cells. Opt Expr 14, 5779, 2006.
58.
Tfayli A.Piot O.Draux F.Pitre F.Manfait M. Molecular characterization of reconstructed skin model by Raman microspectroscopy: comparison with excised human skinBiopolymers872612007. 58. Tfayli, A., Piot, O., Draux, F., Pitre, F., and Manfait, M. Molecular characterization of reconstructed skin model by Raman microspectroscopy: comparison with excised human skin. Biopolymers 87, 261, 2007.
59.
Ponec M.Havekes L.Kempenaar J.Vermeer B.J. Cultured human skin fibroblasts and keratinocytes: differences in the regulation of cholesterol synthesisJ Invest Dermatol811251983. 59. Ponec, M., Havekes, L., Kempenaar, J., and Vermeer, B.J. Cultured human skin fibroblasts and keratinocytes: differences in the regulation of cholesterol synthesis. J Invest Dermatol 81, 125, 1983.
60.
Schurer N.Y.Stremmel W.Grundmann J.U.Schliep V.Kleinert H.Bass N.M.Williams M.L. Evidence for a novel keratinocyte fatty acid uptake mechanism with preference for linoleic acid: comparison of oleic and linoleic acid uptake by cultured human keratinocytes, fibroblasts and a human hepatoma cell lineBiochim Biophys Acta1211511994. 60. Schurer, N.Y., Stremmel, W., Grundmann, J.U., Schliep, V., Kleinert, H., Bass, N.M., and Williams, M.L. Evidence for a novel keratinocyte fatty acid uptake mechanism with preference for linoleic acid: comparison of oleic and linoleic acid uptake by cultured human keratinocytes, fibroblasts and a human hepatoma cell line. Biochim Biophys Acta 1211, 51, 1994.
61.
Coulombe P.A.Wong P. Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffoldsNat Cell Biol66992004. 61. Coulombe, P.A., and Wong, P. Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat Cell Biol 6, 699, 2004.
62.
Quevedo W.C. Epidermal melanin units melanocyte-keratinocyte interactionsAm Zool12351972. 62. Quevedo, W.C. Epidermal melanin units melanocyte-keratinocyte interactions. Am Zool 12, 35, 1972.
63.
Knudsen L.Johansson C.K.Philipsen P.A.Gniadecka M.Wulf H.C. Natural variations and reproducibility of in vivo near-infrared Fourier transform Raman spectroscopy of normal human skinJ Raman Spectrosc335742002. 63. Knudsen, L., Johansson, C.K., Philipsen, P.A., Gniadecka, M., and Wulf, H.C. Natural variations and reproducibility of in vivo near-infrared Fourier transform Raman spectroscopy of normal human skin. J Raman Spectrosc 33, 574, 2002.
64.
Schurer N.Kohne A.Schliep V.Barlag K.Goerz G. Lipid composition and synthesis of HaCaT cells, an immortalized human keratinocyte line, in comparison with normal human adult keratinocytesExp Dermatol21791993. 64. Schurer, N., Kohne, A., Schliep, V., Barlag, K., and Goerz, G. Lipid composition and synthesis of HaCaT cells, an immortalized human keratinocyte line, in comparison with normal human adult keratinocytes. Exp Dermatol 2, 179, 1993.
65.
Dochow S.Krafft C.Neugebauer U.Bocklitz T.Henkel T.Mayer G.Albert J.Popp J. Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environmentsLab Chip1114842011. 65. Dochow, S., Krafft, C., Neugebauer, U., Bocklitz, T., Henkel, T., Mayer, G., Albert, J., and Popp, J. Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments. Lab Chip 11, 1484, 2011.

Information & Authors

Information

Published In

cover image Tissue Engineering Part C: Methods
Tissue Engineering Part C: Methods
Volume 17Issue Number 10October 2011
Pages: 1027 - 1040
PubMed: 21774693

History

Published in print: October 2011
Published online: 20 July 2011
Accepted: 13 June 2011
Received: 9 February 2011

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Marieke Pudlas
Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany.
Institute for Interfacial Engineering (IGVT), University of Stuttgart, Stuttgart, Germany.
Steffen Koch
Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany.
Carsten Bolwien
Fraunhofer Institute for Physical Measurement Techniques (IPM), Freiburg, Germany.
Sibylle Thude
Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany.
Nele Jenne
Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany.
Thomas Hirth
Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany.
Institute for Interfacial Engineering (IGVT), University of Stuttgart, Stuttgart, Germany.
Heike Walles
Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany.
Institute of Tissue Engineering and Regenerative Medicine, Julius-Maximillians University Würzburg, Würzburg, Germany.
Katja Schenke-Layland
Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany.
Inter-University Centre for Medical Technology Stuttgart-Tübingen (IZST), Eberhard Karls University Tübingen, Tübingen, Germany.

Notes

Address correspondence to:Katja Schenke-Layland, Ph.D.Department of Cell and Tissue EngineeringFraunhofer Institute for Interfacial Engineering and Biotechnology (IGB)Nobelstr. 1270569 StuttgartGermany
E-mail: [email protected]

Disclosure Statement

No competing financial interest exists.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top