Abstract

Zebrafish (Danio rerio) are rapidly gaining popularity in translational neuroscience and behavioral research. Physiological similarity to mammals, ease of genetic manipulations, sensitivity to pharmacological and genetic factors, robust behavior, low cost, and potential for high-throughput screening contribute to the growing utility of zebrafish models in this field. Understanding zebrafish behavioral phenotypes provides important insights into neural pathways, physiological biomarkers, and genetic underpinnings of normal and pathological brain function. Novel zebrafish paradigms continue to appear with an encouraging pace, thus necessitating a consistent terminology and improved understanding of the behavioral repertoire. What can zebrafish ‘do’, and how does their altered brain function translate into behavioral actions? To help address these questions, we have developed a detailed catalog of zebrafish behaviors (Zebrafish Behavior Catalog, ZBC) that covers both larval and adult models. Representing a beginning of creating a more comprehensive ethogram of zebrafish behavior, this effort will improve interpretation of published findings, foster cross-species behavioral modeling, and encourage new groups to apply zebrafish neurobehavioral paradigms in their research. In addition, this glossary creates a framework for developing a zebrafish neurobehavioral ontology, ultimately to become part of a unified animal neurobehavioral ontology, which collectively will contribute to better integration of biological data within and across species.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Kalueff AVWheaton MMurphy DL. What's wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depressionBehav Brain Res20071791-18. 1. Kalueff AV, Wheaton M, Murphy DL. What's wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depression. Behav Brain Res 2007;179:1–18.
2.
Riehl RKyzar EAllain A et al. Behavioral and physiological effects of acute ketamine exposure in adult zebrafishNeurotoxicol Teratol201133658-667. 2. Riehl R, Kyzar E, Allain A, et al. Behavioral and physiological effects of acute ketamine exposure in adult zebrafish. Neurotoxicol Teratol 2011;33:658–667.
3.
Manger PRCort JEbrahim N et al. Is 21st century neuroscience too focussed on the rat/mouse model of brain function and dysfunction?Front Neuroanat200825. 3. Manger PR, Cort J, Ebrahim N, et al. Is 21st century neuroscience too focussed on the rat/mouse model of brain function and dysfunction? Front Neuroanat 2008;2:5.
4.
Stewart AKadri FDiLeo J et al. The developing utility of zebrafish in modeling neurobehavioral disordersInt J Comp Psychol201023104-121. 4. Stewart A, Kadri F, DiLeo J, et al. The developing utility of zebrafish in modeling neurobehavioral disorders. Int J Comp Psychol 2010;23:104–121.
5.
Stewart AWong KCachat J et al. Zebrafish models to study drug abuse-related phenotypesRevs Neurosci20102295-105. 5. Stewart A, Wong K, Cachat J, et al. Zebrafish models to study drug abuse-related phenotypes. Revs Neurosci 2010;22:95–105.
6.
Best JDAlderton WK. Zebrafish: An in vivo model for the study of neurological diseasesNeuropsychiatr Dis Treat20084567-576. 6. Best JD, Alderton WK. Zebrafish: An in vivo model for the study of neurological diseases. Neuropsychiatr Dis Treat 2008;4:567–576.
7.
Norton WHWebb KHarris M et al. Approaches to Analyse Mood Disorders in ZebrafishSpink AJBallintijn MRBogers NDGrieco FLoijens LWSNoldus LPJJ et al.Proc Meas Behavior, MaastrichtThe Netherlands2008. 7. Norton WH, Webb K, Harris M, et al. Approaches to Analyse Mood Disorders in Zebrafish. In: Spink AJ, Ballintijn MR, Bogers ND, Grieco F, Loijens LWS, Noldus LPJJ, et al., (eds). Proc Meas Behavior, Maastricht, The Netherlands, 2008.
8.
Jesuthasan S. Zebrafish in the SpotlightScience20022971484-1485. 8. Jesuthasan S. Zebrafish in the Spotlight. Science 2002;297:1484–1485.
9.
Webb KJNorton WHTrumbach D et al. Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamineGenome Biol200910R81. 9. Webb KJ, Norton WH, Trumbach D, et al. Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine. Genome Biol 2009;10:R81.
10.
Norton WBally-Cuif L. Adult zebrafish as a model organism for behavioural geneticsBMC Neurosci20101190. 10. Norton W, Bally-Cuif L. Adult zebrafish as a model organism for behavioural genetics. BMC Neurosci 2010;11:90.
11.
Miller NGerlai R. Quantification of shoaling behaviour in zebrafish (Danio rerio)Behav Brain Res2007184157-166. 11. Miller N, Gerlai R. Quantification of shoaling behaviour in zebrafish (Danio rerio). Behav Brain Res 2007;184:157–166.
12.
Gerlai RAhmad FPrajapati S. Differences in acute alcohol-induced behavioral responses among zebrafish populationsAlcohol Clin Exp Res2008321763-1773. 12. Gerlai R, Ahmad F, Prajapati S. Differences in acute alcohol-induced behavioral responses among zebrafish populations. Alcohol Clin Exp Res 2008;32:1763–1773.
13.
Al-Imari LGerlai R. Sight of conspecifics as reward in associative learning in zebrafish (Danio rerio)Behav Brain Res2008189216-219. 13. Al-Imari L, Gerlai R. Sight of conspecifics as reward in associative learning in zebrafish (Danio rerio). Behav Brain Res 2008;189:216–219.
14.
Gerlai R. Zebrafish antipredatory responses: A future for translational research?Behav Brain Res2010207223-231. 14. Gerlai R. Zebrafish antipredatory responses: A future for translational research? Behav Brain Res 2010;207:223–231.
15.
Gerlai R. A small fish with a big future: Zebrafish in behavioral neuroscienceRev Neurosci2011223-4. 15. Gerlai R. A small fish with a big future: Zebrafish in behavioral neuroscience. Rev Neurosci 2011;22:3–4.
16.
Stewart AWu NCachat J et al. Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral modelsProg Neuropsychopharmacol Biol Psychiatry2011351421-1431. 16. Stewart A, Wu N, Cachat J, et al. Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1421–1431.
17.
Kalueff AStewart AKyzar E et al. Time to recognize zebrafish ‘affective’ behaviorBehaviour20121491019-1036. 17. Kalueff A, Stewart A, Kyzar E, et al. Time to recognize zebrafish ‘affective’ behavior. Behaviour 2012;149:1019–1036.
18.
Panula PSallinen VSundvik M et al. Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseasesZebrafish20063235-247. 18. Panula P, Sallinen V, Sundvik M, et al. Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases. Zebrafish 2006;3:235–247.
19.
Peitsaro NSundvik MAnichtchik OVKaslin JPanula P. Identification of zebrafish histamine H1, H2 and H3 receptors and effects of histaminergic ligands on behaviorBiochem Pharmacol2007731205-1214. 19. Peitsaro N, Sundvik M, Anichtchik OV, Kaslin J, Panula P. Identification of zebrafish histamine H1, H2 and H3 receptors and effects of histaminergic ligands on behavior. Biochem Pharmacol 2007;73:1205–1214.
20.
Chen YCPriyadarshini MPanula P. Complementary developmental expression of the two tyrosine hydroxylase transcripts in zebrafishHistochem Cell Biol2009132375-381. 20. Chen YC, Priyadarshini M, Panula P. Complementary developmental expression of the two tyrosine hydroxylase transcripts in zebrafish. Histochem Cell Biol 2009;132:375–381.
21.
Panula PChen YCPriyadarshini M et al. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseasesNeurobiol Dis20104046-57. 21. Panula P, Chen YC, Priyadarshini M, et al. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis 2010;40:46–57.
22.
Burne TScott Evan Swinderen B et al. Big ideas for small brains: What can psychiatry learn from worms, flies, bees and fish?Mol Psychiatry2011167-16. 22. Burne T, Scott E, van Swinderen B, et al. Big ideas for small brains: What can psychiatry learn from worms, flies, bees and fish? Mol Psychiatry 2011;16:7–16.
23.
Bilotta JSaszik SDeLorenzo ASHardesty HR. Establishing and maintaining a low-cost zebrafish breeding and behavioral research facilityBehav Res Methods Instrum Comput199931178-184. 23. Bilotta J, Saszik S, DeLorenzo AS, Hardesty HR. Establishing and maintaining a low-cost zebrafish breeding and behavioral research facility. Behav Res Methods Instrum Comput 1999;31:178–184.
24.
Dlugos CARabin RA. Ethanol effects on three strains of zebrafish: Model system for genetic investigationsPharmacol Biochem Behav200374471-480. 24. Dlugos CA, Rabin RA. Ethanol effects on three strains of zebrafish: Model system for genetic investigations. Pharmacol Biochem Behav 2003;74:471–480.
25.
Gerlai R. Event recording and video-tracking: Towards the development of high throughput zebrafish screensProc 5th Conf Methods Behav Res, WageningenThe Netherlands2005. 25. Gerlai R. Event recording and video-tracking: Towards the development of high throughput zebrafish screens. Proc 5th Conf Methods Behav Res, Wageningen, The Netherlands, 2005.
26.
Ninkovic JBally-Cuif L. The zebrafish as a model system for assessing the reinforcing properties of drugs of abuseMethods200639262-274. 26. Ninkovic J, Bally-Cuif L. The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods 2006;39:262–274.
27.
Kokel DPeterson RT. Chemobehavioural phenomics and behaviour-based psychiatric drug discovery in the zebrafishBrief Funct Genom Proteom20087483-490. 27. Kokel D, Peterson RT. Chemobehavioural phenomics and behaviour-based psychiatric drug discovery in the zebrafish. Brief Funct Genom Proteom 2008;7:483–490.
28.
Spence RGerlach GLawrence CSmith C. The behaviour and ecology of the zebrafish, Danio rerioBiol Rev20088313-34. 28. Spence R, Gerlach G, Lawrence C, Smith C. The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev 2008;83:13–34.
29.
Egan RJBergner CLHart PC et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafishBehav Brain Res200920538-44. 29. Egan RJ, Bergner CL, Hart PC, et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 2009;205:38–44.
30.
Wong KElegante MBartels B et al. Analyzing habituation responses to novelty in zebrafish (Danio rerio)Behav Brain Res2010208450-457. 30. Wong K, Elegante M, Bartels B, et al. Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav Brain Res 2010;208:450–457.
31.
Blaser REChadwick LMcGinnis GC. Behavioral measures of anxiety in zebrafish (Danio rerio)Behav Brain Res201020856-62. 31. Blaser RE, Chadwick L, McGinnis GC. Behavioral measures of anxiety in zebrafish (Danio rerio). Behav Brain Res 2010;208:56–62.
32.
Champagne DLHoefnagels CCde Kloet RERichardson MK. Translating rodent behavioral repertoire to zebrafish (Danio rerio): Relevance for stress researchBehav Brain Res2010214332-342. 32. Champagne DL, Hoefnagels CC, de Kloet RE, Richardson MK. Translating rodent behavioral repertoire to zebrafish (Danio rerio): Relevance for stress research. Behav Brain Res 2010;214:332–342.
33.
Jesuthasan S. Fear, anxiety and control in the zebrafishDev Neurobiol201272395-403. 33. Jesuthasan S. Fear, anxiety and control in the zebrafish. Dev Neurobiol 2012;72:395–403.
34.
Stewart AWu NCachat J et al. Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral modelsProg Neuropsychopharmacol Biol Psychiatry2011351421-1431. 34. Stewart A, Wu N, Cachat J, et al. Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1421–1431.
35.
Mathur PGuo S. Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypesNeurobiol Dis20104066-72. 35. Mathur P, Guo S. Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypes. Neurobiol Dis 2010;40:66–72.
36.
Cachat JStewart AUtterback E et al. Three-dimensional neurophenotyping of adult zebrafish behaviorPLoS ONE20116e17597. 36. Cachat J, Stewart A, Utterback E, et al. Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS ONE 2011; 6:e17597.
37.
McInnes LAFreimer NB. Mapping genes for psychiatric disorders and behavioral traitsCurr Opin Genet Dev19955376-381. 37. McInnes LA, Freimer NB. Mapping genes for psychiatric disorders and behavioral traits. Curr Opin Genet Dev 1995;5:376–381.
38.
Xu FXie LLi X et al. Construction and validation of a systematic ethogram of Macaca fascicularis in a free enclosurePLoS One20127e37486. 38. Xu F, Xie L, Li X, et al. Construction and validation of a systematic ethogram of Macaca fascicularis in a free enclosure. PLoS One 2012;7:e37486.
39.
Sade DS. An ethogram for Rhesus monkeys. I. Antithetical contrasts in posture and movementAm J Phys Anthropol197338537-542. 39. Sade DS. An ethogram for Rhesus monkeys. I. Antithetical contrasts in posture and movement. Am J Phys Anthropol 1973;38:537–542.
40.
Crawley JN. Behavioral phenotyping of transgenic and knockout mice: Experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral testsBrain Res199983518-26. 40. Crawley JN. Behavioral phenotyping of transgenic and knockout mice: Experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 1999;835:18–26.
41.
Shettleworth SJCognition, Evolution, and Behavior2ndOxford ; New YorkOxford University Press2010. 41. Shettleworth SJ. Cognition, Evolution, and Behavior. 2nd ed. Oxford ; New York: Oxford University Press; 2010.
42.
Darrow KOHarris WA. Characterization and development of courtship in zebrafish, Danio rerioZebrafish2004140-45. 42. Darrow KO, Harris WA. Characterization and development of courtship in zebrafish, Danio rerio. Zebrafish 2004;1:40–45.
43.
Stewart AMDesmond DKyzar E et al. Perspectives of zebrafish models of epilepsy: What, how and where next?Brain Res Bull201287135-143. 43. Stewart AM, Desmond D, Kyzar E, et al. Perspectives of zebrafish models of epilepsy: What, how and where next? Brain Res Bull 2012;87:135–143.
44.
Sison MGerlai R. Behavioral performance altering effects of MK-801 in zebrafish (Danio rerio)Behav Brain Res2011220331-337. 44. Sison M, Gerlai R. Behavioral performance altering effects of MK-801 in zebrafish (Danio rerio). Behav Brain Res 2011;220:331–337.
45.
Speedie NGerlai R. Alarm substance induced behavioral responses in zebrafish (Danio rerio)Behav Brain Res2008188168-177. 45. Speedie N, Gerlai R. Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav Brain Res 2008;188:168–177.
46.
Ahmad FNoldus LPJJTegelenbosch RRichardson M. Zebrafish embryos and larvae in behavioural assaysBehaviour20121491241-1281. 46. Ahmad F, Noldus LPJJ, Tegelenbosch R, Richardson M. Zebrafish embryos and larvae in behavioural assays. Behaviour 2012;149:1241–1281.
47.
Kalueff ACachat JZebrafish Neurobehavioral ProtocolsHumana Press2010. 47. Kalueff A, Cachat J. Zebrafish Neurobehavioral Protocols: Humana Press; 2010.
48.
Kalueff ACachat JZebrafish Models for Neurobehavioral ResearchHumana Press2010. 48. Kalueff A, Cachat J. Zebrafish Models for Neurobehavioral Research: Humana Press; 2010.
49.
Kalueff AStewart AZebrafish Protocols for Neurobehavioral ResearchHumana Press2012. 49. Kalueff A, Stewart A. Zebrafish Protocols for Neurobehavioral Research: Humana Press; 2012.
50.
Stewart AGaikwad SKyzar EGreen JRoth AKalueff AV. Modeling anxiety using adult zebrafish: A conceptual reviewNeuropharmacology201262135-143. 50. Stewart A, Gaikwad S, Kyzar E, Green J, Roth A, Kalueff AV. Modeling anxiety using adult zebrafish: A conceptual review. Neuropharmacology 2012;62:135–143.
51.
Maximino Cde Brito TMda Silva Batista AWHerculano AMMorato SGouveia A Jr. Measuring anxiety in zebrafish: A critical reviewBehav Brain Res2010214157-171. 51. Maximino C, de Brito TM, da Silva Batista AW, Herculano AM, Morato S, Gouveia A, Jr. Measuring anxiety in zebrafish: A critical review. Behav Brain Res 2010;214:157–171.
52.
Sackerman JDonegan JJCunningham CS et al. Zebrafish behavior in novel environments: Effects of acute exposure to anxiolytic compounds and choice of Danio rerio LineInt J Comp Psychol20102343-61. 52. Sackerman J, Donegan JJ, Cunningham CS, et al. Zebrafish behavior in novel environments: Effects of acute exposure to anxiolytic compounds and choice of Danio rerio Line. Int J Comp Psychol 2010;23:43–61.
53.
Piato ALCapiotti KMTamborski AR et al. Unpredictable chronic stress model in zebrafish (Danio rerio): Behavioral and physiological responsesProg Neuropsychopharmacol Biol Psychiatry201135561-567. 53. Piato AL, Capiotti KM, Tamborski AR, et al. Unpredictable chronic stress model in zebrafish (Danio rerio): Behavioral and physiological responses. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:561–567.
54.
Guo SWagle MMathur P. Toward molecular genetic dissection of neural circuits for emotional and motivational behaviorsDev Neurobiol201272358-365. 54. Guo S, Wagle M, Mathur P. Toward molecular genetic dissection of neural circuits for emotional and motivational behaviors. Dev Neurobiol 2012;72:358–365.
55.
Okamoto HAgetsuma MAizawa H. Genetic dissection of the zebrafish habenula, a possible switching board for selection of behavioral strategy to cope with fear and anxietyDev Neurobiol201272386-394. 55. Okamoto H, Agetsuma M, Aizawa H. Genetic dissection of the zebrafish habenula, a possible switching board for selection of behavioral strategy to cope with fear and anxiety. Dev Neurobiol 2012;72:386–394.
56.
Zhu LWeng W. Catadioptric stereo-vision system for the real-time monitoring of 3D behavior in aquatic animalsPhysiol Behav200791106-119. 56. Zhu L, Weng W. Catadioptric stereo-vision system for the real-time monitoring of 3D behavior in aquatic animals. Physiol Behav 2007;91:106–119.
57.
Kokel DBryan JLaggner C et al. Rapid behavior-based identification of neuroactive small molecules in the zebrafishNat Chem Biol20106231-237. 57. Kokel D, Bryan J, Laggner C, et al. Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 2010;6:231–237.
58.
Kokel DPeterson RT. Using the zebrafish photomotor response for psychotropic drug screeningMethods Cell Biol2011105517-524. 58. Kokel D, Peterson RT. Using the zebrafish photomotor response for psychotropic drug screening. Methods Cell Biol 2011;105:517–524.
59.
Rosemberg DBRico EPMussulini BH et al. Differences in spatio-temporal behavior of zebrafish in the open tank paradigm after a short-period confinement into dark and bright environmentsPLoS ONE20116e19397. 59. Rosemberg DB, Rico EP, Mussulini BH, et al. Differences in spatio-temporal behavior of zebrafish in the open tank paradigm after a short-period confinement into dark and bright environments. PLoS ONE 2011;6:e19397.
60.
Blaser RERosemberg DB. Measures of anxiety in zebrafish (Danio rerio): Dissociation of black/white preference and novel tank testPLoS ONE20127e36931. 60. Blaser RE, Rosemberg DB. Measures of anxiety in zebrafish (Danio rerio): Dissociation of black/white preference and novel tank test. PLoS ONE 2012;7:e36931.
61.
Cachat JMCanavello PRElkhayat SI et al. Video-aided analysis of zebrafish locomotion and anxiety-related behavioral responsesZebrafish Neurobehavioral Protocols191-201Humana Press2010. 61. Cachat JM, Canavello PR, Elkhayat SI, et al. Video-aided analysis of zebrafish locomotion and anxiety-related behavioral responses. In: Zebrafish Neurobehavioral Protocols. pp. 191–201. Humana Press, 2010.
62.
Stewart AMGaikwad SKyzar EKalueff AV. Understanding spatio-temporal strategies of adult zebrafish exploration in the open field testBrain Res2012145144-52. 62. Stewart AM, Gaikwad S, Kyzar E, Kalueff AV. Understanding spatio-temporal strategies of adult zebrafish exploration in the open field test. Brain Res 2012;1451:44–52.
63.
Maaswinkel HZhu LWeng W. The immediate and the delayed effects of buspirone on zebrafish (Danio rerio) in an open field test: A 3-D approachBehav Brain Res2012234365-374. 63. Maaswinkel H, Zhu L, Weng W. The immediate and the delayed effects of buspirone on zebrafish (Danio rerio) in an open field test: A 3-D approach. Behav Brain Res 2012;234:365–374.
64.
Miller NGerlai R. Automated tracking of zebrafish shoals and the Analysis of shoaling behaviorZebrafish Protocols for Neurobehavioral Research217-2302012. 64. Miller N, Gerlai R. Automated tracking of zebrafish shoals and the Analysis of shoaling behavior. In: Zebrafish Protocols for Neurobehavioral Research. pp. 217–230, 2012.
65.
Kato SNakagawa TOhkawa M et al. A computer image processing system for quantification of zebrafish behaviorJ Neurosci Methods20041341-7. 65. Kato S, Nakagawa T, Ohkawa M, et al. A computer image processing system for quantification of zebrafish behavior. J Neurosci Methods 2004;134:1–7.
66.
Aspatwar ATolvanen MEJokitalo E et al. Abnormal cerebellar development and ataxia in CARP VIII morphant zebrafishHuman Mol Genet201322417-432. 66. Aspatwar A, Tolvanen ME, Jokitalo E, et al. Abnormal cerebellar development and ataxia in CARP VIII morphant zebrafish. Human Mol Genet 2013;22:417–432.
67.
Oliveira RFSilva JFSimoes JM. Fighting zebrafish: Characterization of aggressive behavior and winner-loser effectsZebrafish2011873-81. 67. Oliveira RF, Silva JF, Simoes JM. Fighting zebrafish: Characterization of aggressive behavior and winner-loser effects. Zebrafish 2011;8:73–81.
68.
Jesuthasan SJMathuru AS. The alarm response in zebrafish: Innate fear in a vertebrate genetic modelJ Neurogenet200822211-228. 68. Jesuthasan SJ, Mathuru AS. The alarm response in zebrafish: Innate fear in a vertebrate genetic model. J Neurogenet 2008;22:211–228.
69.
Egan RJBergner CLHart PC et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafishBehav Brain Res200920538-44. 69. Egan RJ, Bergner CL, Hart PC, et al.: Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 2009;205:38–44.
70.
Maximino Cde Brito TMColmanetti R et al. Parametric analyses of anxiety in zebrafish scototaxisBehav Brain Res20102101-7. 70. Maximino C, de Brito TM, Colmanetti R, et al. Parametric analyses of anxiety in zebrafish scototaxis. Behav Brain Res 2010;210:1–7.
71.
Maximino CMarques de Brito TDias CAGouveia A Jr.Morato S. Scototaxis as anxiety-like behavior in fishNat Protoc20105209-216. 71. Maximino C, Marques de Brito T, Dias CA, Gouveia A, Jr., Morato S. Scototaxis as anxiety-like behavior in fish. Nat Protoc 2010;5:209–216.
72.
Okamoto HAgetsuma MAizawa H. Genetic dissection of the zebrafish habenula, a possible switching board for selection of behavioral strategy to cope with fear and anxietyDev Neurobiol201272386-394. 72. Okamoto H, Agetsuma M, Aizawa H. Genetic dissection of the zebrafish habenula, a possible switching board for selection of behavioral strategy to cope with fear and anxiety. Dev Neurobiol 2012;72:386–394.
73.
Braubach ORWood HDGadbois SFine ACroll RP. Olfactory conditioning in the zebrafish (Danio rerio)Behav Brain Res2009198190-198. 73. Braubach OR, Wood HD, Gadbois S, Fine A, Croll RP. Olfactory conditioning in the zebrafish (Danio rerio). Behav Brain Res 2009;198:190–198.
74.
Bhinder GTierney KB. Olfactory evoked activity assay for larval zebrafishZebrafish Neurobehavioral ProtocolsIIKalueff AVStewart AM71-84Humana Press2012. 74. Bhinder G, Tierney KB. Olfactory evoked activity assay for larval zebrafish. In: Zebrafish Neurobehavioral Protocols Vol II. Kalueff AV, Stewart AM, (eds), pp. 71–84. Humana Press, 2012.
75.
Koide TMiyasaka NMorimoto K et al. Olfactory neural circuitry for attraction to amino acids revealed by transposon-mediated gene trap approach in zebrafishProc Natl Acad Sci USA20091069884-9889. 75. Koide T, Miyasaka N, Morimoto K, et al. Olfactory neural circuitry for attraction to amino acids revealed by transposon-mediated gene trap approach in zebrafish. Proc Natl Acad Sci USA 2009;106:9884–9889.
76.
Wright DRimmer LBPritchard VLKrause JButlin RK. Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio)Naturwissenschaften.200390374-377. 76. Wright D, Rimmer LB, Pritchard VL, Krause J, Butlin RK. Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio). Naturwissenschaften. 2003;90:374–377.
77.
Dahlbom SJLagman DLundstedt-Enkel KSundstrom LFWinberg S. Boldness predicts social status in zebrafish (Danio rerio)PLoS One20116e23565. 77. Dahlbom SJ, Lagman D, Lundstedt-Enkel K, Sundstrom LF, Winberg S. Boldness predicts social status in zebrafish (Danio rerio). PLoS One 2011;6:e23565.
78.
Arbit J. Effects of LSD-25 upon Betta splendens: Reliability of a bioassay techniqueJ Appl Physiol195710317-318. 78. Arbit J. Effects of LSD-25 upon Betta splendens: Reliability of a bioassay technique. J Appl Physiol 1957;10:317–318.
79.
Abramson HAEvans LT. Lysergic acid diethylamide (LSD 25). II. Psychobiological effects on the Siamese fighting fishScience1954120990-991. 79. Abramson HA, Evans LT. Lysergic acid diethylamide (LSD 25). II. Psychobiological effects on the Siamese fighting fish. Science 1954;120:990–991.
80.
Buss RRDrapeau P. Synaptic drive to motoneurons during fictive swimming in the developing zebrafishJ Neurophysiol200186197-210. 80. Buss RR, Drapeau P. Synaptic drive to motoneurons during fictive swimming in the developing zebrafish. J Neurophysiol 2001;86:197–210.
81.
Schneider H. Measuring agonistic behavior in zebrafishZebrafish Neurobehav Protocol Neuromethods201151125-134 81. Schneider H. Measuring agonistic behavior in zebrafish. Zebrafish Neurobehav Protocol Neuromethods 2011; 51:125–134
82.
Oswald MEDrew RERacine MMurdoch GKRobison BD. Is behavioral variation along the bold-shy continuum associated with variation in the stress axis in zebrafish?Physiol Biochem Zool201285718-728. 82. Oswald ME, Drew RE, Racine M, Murdoch GK, Robison BD. Is behavioral variation along the bold-shy continuum associated with variation in the stress axis in zebrafish? Physiol Biochem Zool 2012;85:718–728.
83.
Zhang CSong YThompson DA et al. Pineal-specific agouti protein regulates teleost background adaptationProc Natl Acad Sci USA201010720164-20171. 83. Zhang C, Song Y, Thompson DA, et al. Pineal-specific agouti protein regulates teleost background adaptation. Proc Natl Acad Sci USA 2010;107:20164–20171.
84.
Wagle MMathur PGuo S. Corticotropin-releasing factor critical for zebrafish camouflage behavior is regulated by light and sensitive to ethanolJ Neurosci201131214-224. 84. Wagle M, Mathur P, Guo S. Corticotropin-releasing factor critical for zebrafish camouflage behavior is regulated by light and sensitive to ethanol. J Neurosci 2011;31:214–224.
85.
Salim SAli SA. Vertebrate melanophores as potential model for drug discovery and development: A reviewCell Mol Biol Lett201116162-200. 85. Salim S, Ali SA. Vertebrate melanophores as potential model for drug discovery and development: A review. Cell Mol Biol Lett 2011;16:162–200.
86.
Peng JWagle MMueller T et al. Ethanol-modulated camouflage response screen in zebrafish uncovers a novel role for cAMP and extracellular signal-regulated kinase signaling in behavioral sensitivity to ethanolJ Neurosci2009298408-8418. 86. Peng J, Wagle M, Mueller T, et al. Ethanol-modulated camouflage response screen in zebrafish uncovers a novel role for cAMP and extracellular signal-regulated kinase signaling in behavioral sensitivity to ethanol. J Neurosci 2009;29:8408–8418.
87.
Cachat JKyzar EJCollins C et al. Unique and potent effects of acute ibogaine on zebrafish: The developing utility of novel aquatic models for hallucinogenic drug researchBehav Brain Res2013236258-269. 87. Cachat J, Kyzar EJ, Collins C, et al. Unique and potent effects of acute ibogaine on zebrafish: The developing utility of novel aquatic models for hallucinogenic drug research. Behav Brain Res 2013;236:258–269.
88.
Finney JLRobertson GNMcGee CASmith FMCroll RP. Structure and autonomic innervation of the swim bladder in the zebrafish (Danio rerio)J Comp Neurol2006495587-606. 88. Finney JL, Robertson GN, McGee CA, Smith FM, Croll RP. Structure and autonomic innervation of the swim bladder in the zebrafish (Danio rerio). J Comp Neurol 2006;495:587–606.
89.
Robertson GNLindsey BWDumbarton TCCroll RPSmith FM. The contribution of the swimbladder to buoyancy in the adult zebrafish (Danio rerio): a morphometric analysisJ morphol2008269666-673. 89. Robertson GN, Lindsey BW, Dumbarton TC, Croll RP, Smith FM. The contribution of the swimbladder to buoyancy in the adult zebrafish (Danio rerio): a morphometric analysis. J morphol 2008;269:666–673.
90.
Muller UKvan Leeuwen JL. Swimming of larval zebrafish: Ontogeny of body waves and implications for locomotory developmentJ Exp Biol2004207853-868. 90. Muller UK, van Leeuwen JL. Swimming of larval zebrafish: Ontogeny of body waves and implications for locomotory development. J Exp Biol 2004;207:853–868.
91.
Budick SAO'Malley DM. Locomotor repertoire of the larval zebrafish: Swimming, turning and prey captureJ Exp Biol20002032565-2579. 91. Budick SA, O'Malley DM. Locomotor repertoire of the larval zebrafish: Swimming, turning and prey capture. J Exp Biol 2000;203:2565–2579.
92.
Thorsen DHHale ME. Neural development of the zebrafish (Danio rerio) pectoral finJ Comp Neurol2007504168-184. 92. Thorsen DH, Hale ME. Neural development of the zebrafish (Danio rerio) pectoral fin. J Comp Neurol 2007;504:168–184.
93.
Roberts ACReichl JSong MY et al. Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockadePLoS One20116e29132. 93. Roberts AC, Reichl J, Song MY, et al. Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. PLoS One 2011;6:e29132.
94.
Liu YCBailey IHale ME. Alternative startle motor patterns and behaviors in the larval zebrafish (Danio rerio)J Comp Physiol A Neuroethol Sens Neural Behav Physiol201219811-24. 94. Liu YC, Bailey I, Hale ME. Alternative startle motor patterns and behaviors in the larval zebrafish (Danio rerio). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012;198:11–24.
95.
Uusi-Heikkila SBockenhoff LWolter CArlinghaus R. Differential allocation by female zebrafish (Danio rerio) to different-sized males. An example in a fish species lacking parental carePLoS One20127e48317. 95. Uusi-Heikkila S, Bockenhoff L, Wolter C, Arlinghaus R. Differential allocation by female zebrafish (Danio rerio) to different-sized males. An example in a fish species lacking parental care. PLoS One 2012;7:e48317.
96.
Gerlach GHodgins-Davis AAvolio CSchunter C. Kin recognition in zebrafish: A 24-hour window for olfactory imprintingProc Biol Sci/Royal Soc200827521652170. 96. Gerlach G, Hodgins-Davis A, Avolio C, Schunter C. Kin recognition in zebrafish: A 24-hour window for olfactory imprinting. Proc Biol Sci/Royal Soc 2008;275:21652170.
97.
Harden MVNewton LALloyd RCWhitlock KE. Olfactory imprinting is correlated with changes in gene expression in the olfactory epithelia of the zebrafishJ Neurobiol2006661452-1466. 97. Harden MV, Newton LA, Lloyd RC, Whitlock KE. Olfactory imprinting is correlated with changes in gene expression in the olfactory epithelia of the zebrafish. J Neurobiol 2006;66:1452–1466.
98.
Kyzar EJCollins CGaikwad SGreen JRoth AMonnig L et al. Effects of hallucinogenic agents mescaline and phencyclidine on zebrafish behavior and physiologyProg Neuropsychopharmacol Biol Psychiatry.201237194-202. 98. Kyzar EJ, Collins C, Gaikwad S, Green J, Roth A, Monnig L, et al. Effects of hallucinogenic agents mescaline and phencyclidine on zebrafish behavior and physiology. Prog Neuropsychopharmacol Biol Psychiatry. 2012;37:194–202.
99.
McHenry MJLauder GV. The mechanical scaling of coasting in zebrafish (Danio rerio)J Exp Biol20052082289-2301. 99. McHenry MJ, Lauder GV. The mechanical scaling of coasting in zebrafish (Danio rerio). J Exp Biol 2005;208:2289–2301.
100.
Saint-Amant LDrapeau P. Time course of the development of motor behaviors in the zebrafish embryoJ Neurobiol199837622-632. 100. Saint-Amant L, Drapeau P. Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol 1998;37:622–632.
101.
Drapeau PSaint-Amant LBuss RRChong MMcDearmid JRBrustein E. Development of the locomotor network in zebrafishProg Neurobiol20026885-111. 101. Drapeau P, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Brustein E. Development of the locomotor network in zebrafish. Prog Neurobiol 2002;68:85–111.
102.
Avdesh AMartin-Iverson MTMondal AChen MVerdile GMartins RN. Natural colour preference in the zebrafish (Danio rerio)Proc Meas Behav20102010155-157. 102. Avdesh A, Martin-Iverson MT, Mondal A, Chen M, Verdile G, Martins RN. Natural colour preference in the zebrafish (Danio rerio). Proc Meas Behav 2010;2010:155–157.
103.
Wong KStewart AGilder T et al. Modeling seizure-related behavioral and endocrine phenotypes in adult zebrafishBrain Res20101348209-215. 103. Wong K, Stewart A, Gilder T, et al. Modeling seizure-related behavioral and endocrine phenotypes in adult zebrafish. Brain Res 2010;1348:209–215.
104.
Gerlai RLee VBlaser R. Effects of acute and chronic ethanol exposure on the behavior of adult zebrafish (Danio rerio)Pharmacol Biochem Behav200685752-761. 104. Gerlai R, Lee V, Blaser R. Effects of acute and chronic ethanol exposure on the behavior of adult zebrafish (Danio rerio). Pharmacol Biochem Behav 2006;85:752–761.
105.
Yanagihara DWatanabe SMitarai G. Neuroanatomical substrate for the dorsal light response. I. Differential afferent connections of the lateral lobe of the valvula cerebelli in goldfish (Carassius auratus)Neurosci Res19931625-32. 105. Yanagihara D, Watanabe S, Mitarai G. Neuroanatomical substrate for the dorsal light response. I. Differential afferent connections of the lateral lobe of the valvula cerebelli in goldfish (Carassius auratus). Neurosci Res 1993;16:25–32.
106.
Yanagihara DWatanabe STakagi SMitarai G. Neuroanatomical substrate for the dorsal light response. II. Effects of kainic acid-induced lesions of the valvula cerebelli on the goldfish dorsal light responseNeurosci Res19931633-37. 106. Yanagihara D, Watanabe S, Takagi S, Mitarai G. Neuroanatomical substrate for the dorsal light response. II. Effects of kainic acid-induced lesions of the valvula cerebelli on the goldfish dorsal light response. Neurosci Res 1993;16:33–37.
107.
Yokogawa TMarin WFaraco J et al. Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutantsPLoS Biol20075e277. 107. Yokogawa T, Marin W, Faraco J, et al. Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biol 2007;5:e277.
108.
Cachat JStewart AUtterback E et al. Three-dimensional neurophenotyping of adult zebrafish behaviorPLoS One20116e17597. 108. Cachat J, Stewart A, Utterback E, et al. Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS One 2011;6:e17597.
109.
Gerlai R. Zebra fish: An uncharted behavior genetic modelBehav Genet200333461-468. 109. Gerlai R. Zebra fish: An uncharted behavior genetic model. Behav Genet 2003;33:461–468.
110.
Tiedeken JARamsdell JS. DDT exposure of zebrafish embryos enhances seizure susceptibility: Relationship to fetal p,p'-DDE burden and domoic acid exposure of California sea lionsEnviron Health Perspect200911768-73. 110. Tiedeken JA, Ramsdell JS. DDT exposure of zebrafish embryos enhances seizure susceptibility: Relationship to fetal p,p'-DDE burden and domoic acid exposure of California sea lions. Environ Health Perspect 2009;117:68–73.
111.
Stewart AMCachat JGreen J et al. Constructing the habituome for phenotype-driven zebrafish researchBehav Brain Res2013236110-117. 111. Stewart AM, Cachat J, Green J, et al. Constructing the habituome for phenotype-driven zebrafish research. Behav Brain Res 2013;236:110–117.
112.
Marks CKaut KPMoore FBBagatto B. Ontogenetic oxygen changes alter zebra fish size, behavior, and blood glucosePhysiol Biochem Zool201285635-644. 112. Marks C, Kaut KP, Moore FB, Bagatto B. Ontogenetic oxygen changes alter zebra fish size, behavior, and blood glucose. Physiol Biochem Zool 2012;85:635–644.
113.
Stewart ACachat JWong K et al. Homebase behavior of zebrafish in novelty-based paradigmsBehav Proc201085198-203. 113. Stewart A, Cachat J, Wong K, et al. Homebase behavior of zebrafish in novelty-based paradigms. Behav Proc 2010;85:198–203.
114.
Stewart AMRoth AGaikwad S et al. Constructing habituome for neurobehavioral researchISBS Stress Behav Proc20121818. 114. Stewart AM, Roth A, Gaikwad S, et al. Constructing habituome for neurobehavioral research. ISBS Stress Behav Proc 2012;18:18.
115.
Bianco IHKampff AREngert F. Prey capture behavior evoked by simple visual stimuli in larval zebrafishFront Syst Neurosci20115101. 115. Bianco IH, Kampff AR, Engert F. Prey capture behavior evoked by simple visual stimuli in larval zebrafish. Front Syst Neurosci 2011;5:101.
116.
Williams LRWong KStewart A et al. Behavioral and physiological effects of RDX on adult zebrafishComp Biochem Physiol C Toxicol Pharmacol201215533-38. 116. Williams LR, Wong K, Stewart A, et al. Behavioral and physiological effects of RDX on adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2012;155:33–38.
117.
Cachat JStewart AGrossman L et al. Measuring behavioral and endocrine responses to novelty stress in adult zebrafishNat Protoc201051786-1799. 117. Cachat J, Stewart A, Grossman L, et al. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc 2010;5:1786–1799.
118.
Westerfield M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio)EugeneWesterfield M2007. 118. Westerfield M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio) Eugene: Westerfield M; 2007.
119.
Huang YYTschopp MStraumann DNeuhauss SC. Vestibular deficits do not underlie looping behavior in achiasmatic fishCommun Integ Biol20103379-381. 119. Huang YY, Tschopp M, Straumann D, Neuhauss SC. Vestibular deficits do not underlie looping behavior in achiasmatic fish. Commun Integ Biol 2010;3:379–381.
120.
Huang YYTschopp MNeuhauss SC. Illusionary self-motion perception in zebrafishPLoS One20094e6550. 120. Huang YY, Tschopp M, Neuhauss SC. Illusionary self-motion perception in zebrafish. PLoS One 2009;4:e6550.
121.
Takebe AFurutani TWada T et al. Zebrafish respond to the geomagnetic field by bimodal and group-dependent orientationSci Rep.20122727. 121. Takebe A, Furutani T, Wada T, et al. Zebrafish respond to the geomagnetic field by bimodal and group-dependent orientation. Sci Rep.2012;2:727.
122.
Zhdanova IV. Sleep in zebrafishZebrafish20063215-226. 122. Zhdanova IV. Sleep in zebrafish. Zebrafish 2006;3:215–226.
123.
Yu LTucci VKishi SZhdanova IV. Cognitive aging in zebrafishPLoS One20061e14. 123. Yu L, Tucci V, Kishi S, Zhdanova IV. Cognitive aging in zebrafish. PLoS One 2006;1:e14.
124.
Gonzalez-Nunez VRodriguez RE. The zebrafish: A model to study the endogenous mechanisms of painILAR J200950373-386. 124. Gonzalez-Nunez V, Rodriguez RE. The zebrafish: A model to study the endogenous mechanisms of pain. ILAR J 2009;50:373–386.
125.
Sneddon LU. Pain perception in fish: Indicators and endpointsILAR J200950338-342. 125. Sneddon LU. Pain perception in fish: Indicators and endpoints. ILAR J 2009;50:338–342.
126.
Rose JD. Anthropomorphism and 'mental welfare' of fishesDis Aquatic Org200775139-154. 126. Rose JD. Anthropomorphism and 'mental welfare' of fishes. Dis Aquatic Org 2007;75:139–154.
127.
Gomez-Laplaza LMGerlai R. Latent learning in zebrafish (Danio rerio)Behav Brain Res2010208509-515. 127. Gomez-Laplaza LM, Gerlai R. Latent learning in zebrafish (Danio rerio). Behav Brain Res 2010;208:509–515.
128.
Macho Sanchez-Simon FRodriguez RE. Expression of the nociceptin receptor during zebrafish development: Influence of morphine and nociceptinInt J Dev Neurosci200927315-320. 128. Macho Sanchez-Simon F, Rodriguez RE. Expression of the nociceptin receptor during zebrafish development: Influence of morphine and nociceptin. Int J Dev Neurosci 2009;27:315–320.
129.
Burgess HAGranato M. Modulation of locomotor activity in larval zebrafish during light adaptationJ Exp Biol20072102526-2539. 129. Burgess HA, Granato M. Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 2007;210:2526–2539.
130.
Wilson JMBunte RMCarty AJ. Evaluation of rapid cooling and tricaine methanesulfonate (MS222) as methods of euthanasia in zebrafish (Danio rerio)J Am Assoc Lab Animal Sci200948785-789. 130. Wilson JM, Bunte RM, Carty AJ. Evaluation of rapid cooling and tricaine methanesulfonate (MS222) as methods of euthanasia in zebrafish (Danio rerio). J Am Assoc Lab Animal Sci 2009;48:785–789.
131.
Easter SSNicola GN. The development of eye movements in the zebrafish (Danio rerio)Dev Psychobiol199731267-276. 131. Easter SS, Nicola GN. The development of eye movements in the zebrafish (Danio rerio). Dev Psychobiol 1997;31:267–276.
132.
Maaswinkel HTi L. Spatio-temporal frequency characteristics of the optomotor response in zebrafishVision Res20034321-30. 132. Maaswinkel H, Ti L. Spatio-temporal frequency characteristics of the optomotor response in zebrafish. Vision Res 2003;43:21–30.
133.
Spence RSmith C. Male territoriality mediates density and sex ratio effects on oviposition in the zebrafish (Danio rerio)Animal Behav2005691317-1323. 133. Spence R, Smith C. Male territoriality mediates density and sex ratio effects on oviposition in the zebrafish (Danio rerio). Animal Behav 2005;69:1317–1323.
134.
Ono FHigashijima SShcherbatko AFetcho JRBrehm P. Paralytic zebrafish lacking acetylcholine receptors fail to localize rapsyn clusters to the synapseJ Neurosci2001215439-5448. 134. Ono F, Higashijima S, Shcherbatko A, Fetcho JR, Brehm P. Paralytic zebrafish lacking acetylcholine receptors fail to localize rapsyn clusters to the synapse. J Neurosci 2001;21:5439–5448.
135.
Bretaud SLi QLockwood BLKobayashi KLin EGuo S. A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafishNeuroscience20071461109-1116. 135. Bretaud S, Li Q, Lockwood BL, Kobayashi K, Lin E, Guo S. A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafish. Neuroscience 2007;146:1109–1116.
136.
Lau BBretaud SHuang YLin EGuo S. Dissociation of food and opiate preference by a genetic mutation in zebrafishGenes Brain Behav20065497-505. 136. Lau B, Bretaud S, Huang Y, Lin E, Guo S. Dissociation of food and opiate preference by a genetic mutation in zebrafish. Genes Brain Behav 2006;5:497–505.
137.
Kily LJCowe YCHussain O et al. Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathwaysJ Exp Biol20082111623-1634. 137. Kily LJ, Cowe YC, Hussain O, et al. Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. J Exp Biol 2008;211:1623–1634.
138.
Ninkovic JFolchert AMakhankov YV et al. Genetic identification of AChE as a positive modulator of addiction to the psychostimulant D-amphetamine in zebrafishJ Neurobiol200666463-475. 138. Ninkovic J, Folchert A, Makhankov YV, et al. Genetic identification of AChE as a positive modulator of addiction to the psychostimulant D-amphetamine in zebrafish. J Neurobiol 2006;66:463–475.
139.
Braida DLimonta VPegorini S et al. Hallucinatory and rewarding effect of salvinorin A in zebrafish: Kappa-opioid and CB1-cannabinoid receptor involvementPsychopharmacology (Berl)2007190441-448. 139. Braida D, Limonta V, Pegorini S, et al. Hallucinatory and rewarding effect of salvinorin A in zebrafish: Kappa-opioid and CB1-cannabinoid receptor involvement. Psychopharmacology (Berl) 2007;190:441–448.
140.
Miller NGerlai R. From schooling to shoaling: Patterns of collective motion in zebrafish (Danio rerio)PLoS One20127e48865. 140. Miller N, Gerlai R. From schooling to shoaling: Patterns of collective motion in zebrafish (Danio rerio). PLoS One 2012;7:e48865.
141.
McClenahan PTroup MScott EK. Fin-tail coordination during escape and predatory behavior in larval zebrafishPLoS One20127e32295. 141. McClenahan P, Troup M, Scott EK. Fin-tail coordination during escape and predatory behavior in larval zebrafish. PLoS One 2012;7:e32295.
142.
Borla MAPalecek BBudick SO'Malley DM. Prey capture by larval zebrafish: evidence for fine axial motor controlBrain Behav Evol200260207-229. 142. Borla MA, Palecek B, Budick S, O'Malley DM. Prey capture by larval zebrafish: evidence for fine axial motor control. Brain Behav Evol 2002;60:207–229.
143.
Dugatkin LAMcCall MAGregg RGCavanaugh AChristensen CUnseld M. Zebrafish (Danio rerio) exhibit individual differences in risk-taking behavior during predator inspectionEthol Ecol Evol20051777-81. 143. Dugatkin LA, McCall MA, Gregg RG, Cavanaugh A, Christensen C, Unseld M. Zebrafish (Danio rerio) exhibit individual differences in risk-taking behavior during predator inspection. Ethol Ecol Evol 2005;17:77–81.
144.
Zhdanova IVWang SYLeclair OUDanilova NP. Melatonin promotes sleep-like state in zebrafishBrain Res2001903263-268. 144. Zhdanova IV, Wang SY, Leclair OU, Danilova NP. Melatonin promotes sleep-like state in zebrafish. Brain Res 2001;903:263–268.
145.
Zhdanova IV. Sleep and its regulation in zebrafishRev Neurosci20112227-36. 145. Zhdanova IV. Sleep and its regulation in zebrafish. Rev Neurosci 2011;22:27–36.
146.
Olszewski JHaehnel MTaguchi MLiao JC. Zebrafish larvae exhibit rheotaxis and can escape a continuous suction source using their lateral linePLoS One20127e36661. 146. Olszewski J, Haehnel M, Taguchi M, Liao JC. Zebrafish larvae exhibit rheotaxis and can escape a continuous suction source using their lateral line. PLoS One 2012;7:e36661.
147.
Suli AWatson GMRubel EWRaible DW. Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cellsPLoS One20127e29727. 147. Suli A, Watson GM, Rubel EW, Raible DW. Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells. PLoS One 2012;7:e29727.
148.
Maximino Cda Silva AWGouveia A Jr.Herculano AM. Pharmacological analysis of zebrafish (Danio rerio) scototaxisProg Neuropsychopharmacol Biol Psychiatry201135624-631. 148. Maximino C, da Silva AW, Gouveia A, Jr., Herculano AM. Pharmacological analysis of zebrafish (Danio rerio) scototaxis. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:624–631.
149.
Hortopan GABaraban SC. Aberrant expression of genes necessary for neuronal development and notch signaling in an epileptic mind bomb zebrafishDev Dyn20112401964-1976. 149. Hortopan GA, Baraban SC. Aberrant expression of genes necessary for neuronal development and notch signaling in an epileptic mind bomb zebrafish. Dev Dyn 2011;240:1964–1976.
150.
Hortopan GADinday MTBaraban SC. Spontaneous seizures and altered gene expression in GABA signaling pathways in a mind bomb mutant zebrafishJ Neurosci20103013718-13728. 150. Hortopan GA, Dinday MT, Baraban SC. Spontaneous seizures and altered gene expression in GABA signaling pathways in a mind bomb mutant zebrafish. J Neurosci 2010;30:13718–13728.
151.
Miller NYGerlai R. Shoaling in zebrafish: What we don't knowRev Neurosci20112217-25. 151. Miller NY, Gerlai R. Shoaling in zebrafish: What we don't know. Rev Neurosci 2011;22:17–25.
152.
Ewald HS. A zebrafish model of schizophrenia and sickness behavior: MK-801 and endogenous NMDAR antagonismUMI Dissertation Publishers2008. 152. Ewald HS. A zebrafish model of schizophrenia and sickness behavior: MK-801 and endogenous NMDAR antagonism. UMI Dissertation Publishers; 2008.
153.
Jones R. Let sleeping zebrafish lie: A new model for sleep studiesPLoS Biol20075e281. 153. Jones R. Let sleeping zebrafish lie: A new model for sleep studies. PLoS Biol 2007;5:e281.
154.
Zhdanova IVYu LLopez-Patino MShang EKishi SGuelin E. Aging of the circadian system in zebrafish and the effects of melatonin on sleep and cognitive performanceBrain Res Bull200875433-441. 154. Zhdanova IV, Yu L, Lopez-Patino M, Shang E, Kishi S, Guelin E. Aging of the circadian system in zebrafish and the effects of melatonin on sleep and cognitive performance. Brain Res Bull 2008;75:433–441.
155.
Appelbaum LWang GXMaro GS et al. Sleep-wake regulation and hypocretin-melatonin interaction in zebrafishProc Natl Acad Sci USA200910621942-21947. 155. Appelbaum L, Wang GX, Maro GS, et al. Sleep-wake regulation and hypocretin-melatonin interaction in zebrafish. Proc Natl Acad Sci USA 2009;106:21942–21947.
156.
Rihel JProber DASchier AF. Monitoring sleep and arousal in zebrafishMethods Cell Biol2010100281-294. 156. Rihel J, Prober DA, Schier AF. Monitoring sleep and arousal in zebrafish. Methods Cell Biol 2010;100:281–294.
157.
Baier HKorsching S. Olfactory glomeruli in the zebrafish form an invariant pattern and are identifiable across animalsJ Neurosci199414219-230. 157. Baier H, Korsching S. Olfactory glomeruli in the zebrafish form an invariant pattern and are identifiable across animals. J Neurosci 1994;14:219–230.
158.
Liao JCFetcho JR. Shared versus specialized glycinergic spinal interneurons in axial motor circuits of larval zebrafishJ Neurosci20082812982-12992. 158. Liao JC, Fetcho JR. Shared versus specialized glycinergic spinal interneurons in axial motor circuits of larval zebrafish. J Neurosci 2008;28:12982–12992.
159.
Abramson HAGettner HHHewitt MPDean G. Effect of lysergic acid diethylamide on the surfacing behaviour of large carpNature1962193320-321. 159. Abramson HA, Gettner HH, Hewitt MP, Dean G. Effect of lysergic acid diethylamide on the surfacing behaviour of large carp. Nature 1962;193:320–321.
160.
De Froment AJ. Fighting for information: Decision-making, animal contests and the emergence of social hierarchyAnn ArborUMI Dissertation Publisher2010. 160. De Froment AJ. Fighting for information: Decision-making, animal contests and the emergence of social hierarchy. Ann Arbor: UMI Dissertation Publisher; 2010.
161.
Gibb AAshley-Ross MAPace CMLong JH. Fish out of water: Terrestrial jumping by fully aquatic fishesJ Exp Zool2011313A1-5. 161. Gibb A, Ashley-Ross MA, Pace CM, Long JH. Fish out of water: Terrestrial jumping by fully aquatic fishes. J Exp Zool 2011;313A:1–5.
162.
Spence RJordan WCSmith C. Genetic analysis of male reproductive success in relation to density in the zebrafish, Danio rerioFront Zool200635. 162. Spence R, Jordan WC, Smith C. Genetic analysis of male reproductive success in relation to density in the zebrafish, Danio rerio. Front Zool 2006;3:5.
163.
Nava SSAn SHamil T. Visual detection of UV cues by adult zebrafish (Danio rerio)J Vis2011112. 163. Nava SS, An S, Hamil T. Visual detection of UV cues by adult zebrafish (Danio rerio). J Vis 2011;11:2.
164.
Grossman LUtterback EStewart A et al. Characterization of behavioral and endocrine effects of LSD on zebrafishBehav Brain Res2010214277-284. 164. Grossman L, Utterback E, Stewart A, et al. Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res 2010;214:277–284.
165.
Beck JCGilland ETank DWBaker R. Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfishJ Neurophysiol2004923546-3561. 165. Beck JC, Gilland E, Tank DW, Baker R. Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfish. J Neurophysiol 2004;92:3546–3561.
166.
Mo WChen FNechiporuk ANicolson T. Quantification of vestibular-induced eye movements in zebrafish larvaeBMC Neurosci201011110. 166. Mo W, Chen F, Nechiporuk A, Nicolson T. Quantification of vestibular-induced eye movements in zebrafish larvae. BMC Neurosci 2010;11:110.
167.
Cachat JCanavello PElegante M et al. Modeling withdrawal syndrome in zebrafishBehav Brain Res2010208371-376. 167. Cachat J, Canavello P, Elegante M, et al. Modeling withdrawal syndrome in zebrafish. Behav Brain Res 2010;208:371–376.
168.
Stewart AWong KCachat J et al. Zebrafish models to study drug abuse-related phenotypesRev Neurosci20112295-105. 168. Stewart A, Wong K, Cachat J, et al. Zebrafish models to study drug abuse-related phenotypes. Rev Neurosci 2011;22:95–105.
169.
Kyzar EZapolsky IGreen J et al. The Zebrafish Neurophenome Database (ZND): A dynamic open-access resource for zebrafish neurophenotypic dataZebrafish201298-14. 169. Kyzar E, Zapolsky I, Green J, et al. The Zebrafish Neurophenome Database (ZND): A dynamic open-access resource for zebrafish neurophenotypic data. Zebrafish 2012;9:8–14.
170.
Sprague JDoerry EDouglas SWesterfield M. The Zebrafish Information Network (ZFIN): A resource for genetic, genomic and developmental researchNucleic Acids Res20012987-90. 170. Sprague J, Doerry E, Douglas S, Westerfield M. The Zebrafish Information Network (ZFIN): A resource for genetic, genomic and developmental research. Nucleic Acids Res 2001;29:87–90.
171.
Kyzar EZapolsky IGreen J et al. The Zebrafish Neurophenome Database (ZND): A dynamic open-access resource for zebrafish neurophenotypic dataZebrafish201298-14. 171. Kyzar E, Zapolsky I, Green J, et al. The Zebrafish Neurophenome Database (ZND): A dynamic open-access resource for zebrafish neurophenotypic data. Zebrafish 2012;9:8–14.
172.
Best JDBerghmans SHunt JJ et al. Non-associative learning in larval zebrafishNeuropsychopharmacology2008331206-1215. 172. Best JD, Berghmans S, Hunt JJ, et al. Non-associative learning in larval zebrafish. Neuropsychopharmacology 2008;33:1206–1215.
173.
Grossman LStewart AGaikwad SUtterback EWu NDileo J et al. Effects of piracetam on behavior and learning in adult zebrafishBrain Res Bull.20118558-63. 173. Grossman L, Stewart A, Gaikwad S, Utterback E, Wu N, Dileo J, et al. Effects of piracetam on behavior and learning in adult zebrafish. Brain Res Bull. 2011;85:58–63.
174.
Wright DKrause J. Repeated measures of shoaling tendency in zebrafish (Danio rerio) and other small teleost fishesNat Protoc200611828-1831. 174. Wright D, Krause J. Repeated measures of shoaling tendency in zebrafish (Danio rerio) and other small teleost fishes. Nat Protoc 2006;1:1828–1831.
175.
Wright DNakamichi RKrause JButlin RK. QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio)Behav Genet200636271-284. 175. Wright D, Nakamichi R, Krause J, Butlin RK. QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio). Behav Genet 2006;36:271–284.
176.
Filby ALPaull GCHickmore TFTyler CR. Unravelling the neurophysiological basis of aggression in a fish modelBMC Genomics201011498. 176. Filby AL, Paull GC, Hickmore TF, Tyler CR. Unravelling the neurophysiological basis of aggression in a fish model. BMC Genomics 2010;11:498.
177.
Cadet JL. Amphetamine recapitulates developmental programs in the zebrafishGenome Biol200910231. 177. Cadet JL. Amphetamine recapitulates developmental programs in the zebrafish. Genome Biol 2009;10:231.
178.
Shamchuk ALTierney KB. Phenotyping stimulus evoked responses in larval zebrafishBehavior20121491177-1207. 178. Shamchuk AL, Tierney KB. Phenotyping stimulus evoked responses in larval zebrafish. Behavior 2012;149:1177–1207.
179.
Tierney KBSekela MACobbler CE et al. Evidence for behavioral preference towards environmental concentrations of urban-use herbicides in a model adult fishEnviron Toxicol Chem2011302046-2054. 179. Tierney KB, Sekela MA, Cobbler CE, et al. Evidence for behavioral preference towards environmental concentrations of urban-use herbicides in a model adult fish. Environ Toxicol Chem 2011;30:2046–2054.
180.
Tierney KB. Review: Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafishBiochim Biophys Acta Mol Basis Dis20111812381-389. 180. Tierney KB. Review: Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafish. Biochim Biophys Acta Mol Basis Dis 2011;1812:381–389.
181.
Tierney KBRen XAlyasha'e ZZielinski B. Towards a mechanistic understanding of food odor driven motion using zebrafish (Danio rerio)Chemical Senses200833S156-S157. 181. Tierney KB, Ren X, Alyasha'e Z, Zielinski B. Towards a mechanistic understanding of food odor driven motion using zebrafish (Danio rerio). Chemical Senses 2008;33:S156–S157.
182.
Tierney KBBaldwin DHHara TJRoss PSScholz NLKennedy CJ. Review: Olfactory toxicity in fishesAquatic Toxicol2010962-26. 182. Tierney KB, Baldwin DH, Hara TJ, Ross PS, Scholz NL, Kennedy CJ. Review: Olfactory toxicity in fishes. Aquatic Toxicol 2010;96:2–26.
183.
Fleisch VCNeuhauss SC. Visual behavior in zebrafishZebrafish20063191-201. 183. Fleisch VC, Neuhauss SC. Visual behavior in zebrafish. Zebrafish 2006;3:191–201.
184.
Hodel CNeuhauss SC. Computer-based analysis of the optokinetic response in zebrafish larvaeCSH Protoc20082008pdb prot4961. 184. Hodel C, Neuhauss SC: Computer-based analysis of the optokinetic response in zebrafish larvae. CSH Protoc 2008;2008:pdb prot4961.
185.
Huang YYNeuhauss SC. The optokinetic response in zebrafish and its applicationsFront Biosci2008131899-1916. 185. Huang YY, Neuhauss SC. The optokinetic response in zebrafish and its applications. Front Biosci 2008;13:1899–1916.
186.
Spence R. Zebrafish Ecology and BehaviourZebrafish Models in Neurobehavioral ResearchKalueff AVCachat JM1-39Humana PressNY2010. 186. Spence R. Zebrafish Ecology and Behaviour. In: Zebrafish Models in Neurobehavioral Research. Kalueff AV, Cachat JM, (eds), pp. 1–39. Humana Press, NY, 2010.
187.
Gerlai R. High-throughput behavioral screens: The first step towards finding genes involved in vertebrate brain function using zebrafishMolecules2010152609-2622. 187. Gerlai R. High-throughput behavioral screens: The first step towards finding genes involved in vertebrate brain function using zebrafish. Molecules 2010;15:2609–2622.

Information & Authors

Information

Published In

cover image Zebrafish
Zebrafish
Volume 10Issue Number 1March 2013
Pages: 70 - 86
PubMed: 23590400

History

Published online: 16 April 2013
Published in print: March 2013

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Allan V. Kalueff
Department of Pharmacology and Neuroscience Program, Tulane University Medical School, New Orleans, Louisiana.
ZENEREI Institute and ZNRC, Slidell, Louisiana.
Michael Gebhardt
Department of Pharmacology and Neuroscience Program, Tulane University Medical School, New Orleans, Louisiana.
ZENEREI Institute and ZNRC, Slidell, Louisiana.
Adam Michael Stewart
Department of Pharmacology and Neuroscience Program, Tulane University Medical School, New Orleans, Louisiana.
ZENEREI Institute and ZNRC, Slidell, Louisiana.
Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania.
Jonathan M. Cachat
Department of Pharmacology and Neuroscience Program, Tulane University Medical School, New Orleans, Louisiana.
ZENEREI Institute and ZNRC, Slidell, Louisiana.
Mallorie Brimmer
Department of Pharmacology and Neuroscience Program, Tulane University Medical School, New Orleans, Louisiana.
Jonathan S. Chawla
Department of Pharmacology and Neuroscience Program, Tulane University Medical School, New Orleans, Louisiana.
Cassandra Craddock
Department of Pharmacology and Neuroscience Program, Tulane University Medical School, New Orleans, Louisiana.
Evan J. Kyzar
Department of Pharmacology and Neuroscience Program, Tulane University Medical School, New Orleans, Louisiana.
Andrew Roth
Department of Pharmacology and Neuroscience Program, Tulane University Medical School, New Orleans, Louisiana.
Samuel Landsman
Department of Pharmacology and Neuroscience Program, Tulane University Medical School, New Orleans, Louisiana.
Siddharth Gaikwad
Department of Pharmacology and Neuroscience Program, Tulane University Medical School, New Orleans, Louisiana.
Kyle Robinson
Department of Pharmacology and Neuroscience Program, Tulane University Medical School, New Orleans, Louisiana.
ZENEREI Institute and ZNRC, Slidell, Louisiana.
Erik Baatrup
Institute of Bioscience, Aarhus University, Aarhus, Denmark.
Keith Tierney
Department of Biological Sciences, University of Alberta, Edmonton, Canada.
Angela Shamchuk
Department of Biological Sciences, University of Alberta, Edmonton, Canada.
William Norton
Department of Biology, University of Leicester, Leicester, United Kingdom.
Noam Miller
Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey.
Teresa Nicolson
Vollum Institute, Oregon Health and Science University, Portland, Oregon.
Oliver Braubach
Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Charles P. Gilman
Biology Department, Nazarbayev University, Astana, Kazakhstan.
Julian Pittman
Department of Biological and Environmental Sciences, Troy University, Troy, Alabama.
Denis B. Rosemberg
Department of Biochemistry, Federal University Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Robert Gerlai
Department of Psychology, University of Toronto, Mississauga, Canada.
David Echevarria
Department of Psychology, University of Southern Mississippi, Hattiesburg, Mississippi.
Elisabeth Lamb
Department of Psychology, University of Southern Mississippi, Hattiesburg, Mississippi.
Stephan C.F. Neuhauss
Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
Wei Weng
Xyzfish, Ronkonkoma, New York.
Laure Bally-Cuif
Neurogenetics Group, Institute of Neurobiology Alfred Fessard, Gif-sur-Yvette, France.
Henning Schneider, and the Zebrafish Neuroscience Research Consortium (ZNRC)
ZENEREI Institute and ZNRC, Slidell, Louisiana.
Department of Biology, DePauw University, Greencastle, Indiana.

Notes

Address correspondence to:Allan V. Kalueff, PhDDepartment of Pharmacology, SL-83Tulane University Medical School1430 Tulane AvenueNew Orleans, LA 70112E-mail: [email protected]

Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top