Review Article
No access
Published Online: 20 March 2011

Oxidative Stress in Ischemic Brain Damage: Mechanisms of Cell Death and Potential Molecular Targets for Neuroprotection

Publication: Antioxidants & Redox Signaling
Volume 14, Issue Number 8

Abstract

Significant amounts of oxygen free radicals (oxidants) are generated during cerebral ischemia/reperfusion, and oxidative stress plays an important role in brain damage after stroke. In addition to oxidizing macromolecules, leading to cell injury, oxidants are also involved in cell death/survival signal pathways and cause mitochondrial dysfunction. Experimental data from laboratory animals that either overexpress (transgenic) or are deficient in (knock-out) antioxidant proteins, mainly superoxide dismutase, have provided strong evidence of the role of oxidative stress in ischemic brain damage. In addition to mitochondria, recent reports demonstrate that NADPH oxidase (NOX), an important pro-oxidant enzyme, is also involved in the generation of oxidants in the brain after stroke. Inhibition of NOX is neuroprotective against cerebral ischemia. We propose that superoxide dismutase and NOX activity in the brain is a major determinant for ischemic damage/repair and that these major anti- and pro-oxidant enzymes are potential endogenous molecular targets for stroke therapy. Antioxid. Redox Signal. 14, 1505–1517.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Abramov AYScorziello ADuchen MR. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenationJ Neurosci271129-11382007. 1. Abramov AY, Scorziello A, and Duchen MR. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27: 1129–1138, 2007.
2.
Adibhatla RMHatcher JFDempsey RJ. Phospholipase A2, hydroxyl radicals, and lipid peroxidation in transient cerebral ischemiaAntioxid Redox Signal5647-6542003. 2. Adibhatla RM, Hatcher JF, and Dempsey RJ. Phospholipase A2, hydroxyl radicals, and lipid peroxidation in transient cerebral ischemia. Antioxid Redox Signal 5: 647–654, 2003.
3.
Asahi MWang XMori TSumii TJung J-CMoskowitz MAFini MELo EH. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemiaJ Neurosci217724-77322001. 3. Asahi M, Wang X, Mori T, Sumii T, Jung J-C, Moskowitz MA, Fini ME, and Lo EH. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J Neurosci 21: 7724–7732, 2001.
4.
Barone FCIrving EARay AMLee JCKassis SKumar SBadger AMWhite RFMcVey MJLegos JJErhardt JANelson AHOhlstein EHHunter AJWard KSmith BRAdams JLParsons AA. SB 239063, a second-generation p38 mitogen-activated protein kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemiaJ Pharmacol Exp Ther296312-3212001. 4. Barone FC, Irving EA, Ray AM, Lee JC, Kassis S, Kumar S, Badger AM, White RF, McVey MJ, Legos JJ, Erhardt JA, Nelson AH, Ohlstein EH, Hunter AJ, Ward K, Smith BR, Adams JL, and Parsons AA. SB 239063, a second-generation p38 mitogen-activated protein kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemia. J Pharmacol Exp Ther 296: 312–321, 2001.
5.
Beckman JSBeckman TWChen JMarshall PAFreeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxideProc Natl Acad Sci U S A871620-16241990. 5. Beckman JS, Beckman TW, Chen J, Marshall PA, and Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87: 1620–1624, 1990.
6.
Bedard KKrause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiologyPhysiol Rev87245-3132007. 6. Bedard K and Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87: 245–313, 2007.
7.
Brennan AMSuh SWWon SJNarasimhan PKauppinen TMLee HEdling YChan PHSwanson RA. NADPH oxidase is the primary source of superoxide induced by NMDA receptor activationNat Neurosci12857-8632009. 7. Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, Edling Y, Chan PH, and Swanson RA. NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci 12: 857–863, 2009.
8.
Cardone MHRoy NStennicke HRSalvesen GSFranke TFStanbridge EFrisch SReed JC. Regulation of cell death protease caspase-9 by phosphorylationScience2821318-13211998. 8. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, and Reed JC. Regulation of cell death protease caspase-9 by phosphorylation. Science 282: 1318–1321, 1998.
9.
Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brainJ Cereb Blood Flow Metab212-142001. 9. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21: 2–14, 2001.
10.
Chan PH. Role of oxidants in ischemic brain damageStroke271124-11291996. 10. Chan PH. Role of oxidants in ischemic brain damage. Stroke 27: 1124–1129, 1996.
11.
Chan PHKamii HYang GGafni JEpstein CJCarlson EReola L. Brain infarction is not reduced in SOD-1 transgenic mice after a permanent focal cerebral ischemiaNeuroreport5293-2961993. 11. Chan PH, Kamii H, Yang G, Gafni J, Epstein CJ, Carlson E, and Reola L. Brain infarction is not reduced in SOD-1 transgenic mice after a permanent focal cerebral ischemia. Neuroreport 5: 293–296, 1993.
12.
Chan PHKawase MMurakami KChen SFLi YCalagui BReola LCarlson EEpstein CJ. Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusionJ Neurosci188292-82991998. 12. Chan PH, Kawase M, Murakami K, Chen SF, Li Y, Calagui B, Reola L, Carlson E, and Epstein CJ. Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J Neurosci 18: 8292–8299, 1998.
13.
Chen HSong YSChan PH. Inhibition of NADPH oxidase is neuroprotective after ischemia–reperfusionJ Cereb Blood Flow Metab291262-12722009. 13. Chen H, Song YS, and Chan PH. Inhibition of NADPH oxidase is neuroprotective after ischemia–reperfusion. J Cereb Blood Flow Metab 29: 1262–1272, 2009.
14.
Datta SRDudek HTao XMasters SFu HGotoh YGreenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machineryCell91231-2411997. 14. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, and Greenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231–241, 1997.
15.
Dröge W. Free radicals in the physiological control of cell functionPhysiol Rev8247-952002. 15. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 82: 47–95, 2002.
16.
Endo HKamada HNito CNishi TChan PH. Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in ratsJ Neurosci267974-79832006. 16. Endo H, Kamada H, Nito C, Nishi T, and Chan PH. Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. J Neurosci 26: 7974–7983, 2006.
17.
Endo HNito CKamada HNishi TChan PH. Activation of the Akt/GSK3β signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in ratsJ Cereb Blood Flow Metab261479-14892006. 17. Endo H, Nito C, Kamada H, Nishi T, and Chan PH. Activation of the Akt/GSK3β signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab 26: 1479–1489, 2006.
18.
Epstein CJAvraham KBLovett MSmith SElroy-Stein ORotman GBry CGroner Y. Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndromeProc Natl Acad Sci U S A848044-80481987. 18. Epstein CJ, Avraham KB, Lovett M, Smith S, Elroy-Stein O, Rotman G, Bry C, and Groner Y. Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndrome. Proc Natl Acad Sci U S A 84: 8044–8048, 1987.
19.
Feigin VLLawes CMMBennett DAAnderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th centuryLancet Neurol243-532003. 19. Feigin VL, Lawes CMM, Bennett DA, and Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2: 43–53, 2003.
20.
Franke TFKaplan DRCantley LC. PI3K: downstream AKTion blocks apoptosisCell88435-4371997. 20. Franke TF, Kaplan DR, and Cantley LC. PI3K: downstream AKTion blocks apoptosis. Cell 88: 435–437, 1997.
21.
Fujimura MMorita-Fujimura YKawase MCopin J-CCalagui BEpstein CJChan PH. Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome c and subsequent DNA fragmentation after permanent focal cerebral ischemia in miceJ Neurosci193414-34221999. 21. Fujimura M, Morita-Fujimura Y, Kawase M, Copin J-C, Calagui B, Epstein CJ, and Chan PH. Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome c and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J Neurosci 19: 3414–3422, 1999.
22.
Fujimura MMorita-Fujimura YNoshita NSugawara TKawase MChan PH. The cytosolic antioxidant copper/zinc-superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral ischemia in miceJ Neurosci202817-28242000. 22. Fujimura M, Morita-Fujimura Y, Noshita N, Sugawara T, Kawase M, and Chan PH. The cytosolic antioxidant copper/zinc-superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral ischemia in mice. J Neurosci 20: 2817–2824, 2000.
23.
Gasche YCopin J-CSugawara TFujimura MChan PH. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood–brain barrier disruption after transient focal cerebral ischemiaJ Cereb Blood Flow Metab211393-14002001. 23. Gasche Y, Copin J-C, Sugawara T, Fujimura M, and Chan PH. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood–brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab 21: 1393–1400, 2001.
24.
Green DRKroemer G. Cytoplasmic functions of the tumour suppressor p53Nature4581127-11302009. 24. Green DR and Kroemer G. Cytoplasmic functions of the tumour suppressor p53. Nature 458: 1127–1130, 2009.
25.
Gu ZCui JBrown SFridman RMobashery SStrongin AYLipton SA. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemiaJ Neurosci256401-64082005. 25. Gu Z, Cui J, Brown S, Fridman R, Mobashery S, Strongin AY, and Lipton SA. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci 25: 6401–6408, 2005.
26.
Gu ZKaul MYan BKridel SJCui JStrongin ASmith JWLiddington RCLipton SA. S-Nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell deathScience2971186-11902002. 26. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, and Lipton SA. S-Nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297: 1186–1190, 2002.
27.
Hong HZeng J-SKreulen DLKaufman DIChen AF. Atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in ischemic strokeAm J Physiol Heart Circ Physiol291H2210-H22152006. 27. Hong H, Zeng J-S, Kreulen DL, Kaufman DI, and Chen AF. Atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in ischemic stroke. Am J Physiol Heart Circ Physiol 291: H2210–H2215, 2006.
28.
Infanger DWSharma RVDavisson RL. NADPH oxidases of the brain: distribution, regulation, and functionAntioxid Redox Signal81583-15962006. 28. Infanger DW, Sharma RV, and Davisson RL. NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Signal 8: 1583–1596, 2006.
29.
Irving EABamford M. Role of mitogen- and stress-activated kinases in ischemic injuryJ Cereb Blood Flow Metab22631-6472002. 29. Irving EA and Bamford M. Role of mitogen- and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab 22: 631–647, 2002.
30.
Jian Liu KRosenberg GA. Matrix metalloproteinases and free radicals in cerebral ischemiaFree Radic Biol Med3971-802005. 30. Jian Liu K and Rosenberg GA. Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med 39: 71–80, 2005.
31.
Johnson JLPark J-WEl Benna JFaust LPInanami OBabior BM. Activation of p47PHOX, a cytosolic subunit of the leukocyte NADPH oxidase. Phosphorylation of Ser-359 or Ser-370 precedes phosphorylation at other sites and is required for activityJ Biol Chem27335147-351521998. 31. Johnson JL, Park J-W, El Benna J, Faust LP, Inanami O, and Babior BM. Activation of p47PHOX, a cytosolic subunit of the leukocyte NADPH oxidase. Phosphorylation of Ser-359 or Ser-370 precedes phosphorylation at other sites and is required for activity. J Biol Chem 273: 35147–35152, 1998.
32.
Jung JEKim GSNarasimhan PSong YSChan PH. Regulation of Mn-superoxide dismutase activity and neuroprotection by STAT3 in mice after cerebral ischemiaJ Neurosci297003-70142009. 32. Jung JE, Kim GS, Narasimhan P, Song YS, and Chan PH. Regulation of Mn-superoxide dismutase activity and neuroprotection by STAT3 in mice after cerebral ischemia. J Neurosci 29: 7003–7014, 2009.
33.
Kahles TLuedike PEndres MGalla H-JSteinmetz HBusse RNeumann-Haefelin TBrandes RP. NADPH oxidase plays a central role in blood-brain barrier damage in experimental strokeStroke383000-30062007. 33. Kahles T, Luedike P, Endres M, Galla H-J, Steinmetz H, Busse R, Neumann-Haefelin T, and Brandes RP. NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 38: 3000–3006, 2007.
34.
Kamada HYu FNito CChan PH. Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats. Relation to blood-brain barrier dysfunctionStroke381044-10492007. 34. Kamada H, Yu F, Nito C, and Chan PH. Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats. Relation to blood-brain barrier dysfunction. Stroke 38: 1044–1049, 2007.
35.
Kapahi PTakahashi TNatoli GAdams SRChen YTsien RYKarin M. Inhibition of NF-κB activation by arsenite through reaction with a critical cysteine in the activation loop of IκB kinaseJ Biol Chem27536062-360662000. 35. Kapahi P, Takahashi T, Natoli G, Adams SR, Chen Y, Tsien RY, and Karin M. Inhibition of NF-κB activation by arsenite through reaction with a critical cysteine in the activation loop of IκB kinase. J Biol Chem 275: 36062–36066, 2000.
36.
Kawase MMurakami KFujimura MMorita-Fujimura YGasche YKondo TScott RWChan PH. Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiencyStroke301962-19681999. 36. Kawase M, Murakami K, Fujimura M, Morita-Fujimura Y, Gasche Y, Kondo T, Scott RW, and Chan PH. Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiency. Stroke 30: 1962–1968, 1999.
37.
Keller JNKindy MSHoltsberg FWSt. Clair DKYen H-CGermeyer ASteiner SMBruce-Keller AJHutchins JBMattson MP. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunctionJ Neurosci18687-6971998. 37. Keller JN, Kindy MS, Holtsberg FW, St. Clair DK, Yen H-C, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, and Mattson MP. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18: 687–697, 1998.
38.
Kim GSJung JENiizuma KChan PH. CK2 is a novel negative regulator of NADPH oxidase and a neuroprotectant in mice after cerebral ischemiaJ Neurosci2914779-147892009. 38. Kim GS, Jung JE, Niizuma K, and Chan PH. CK2 is a novel negative regulator of NADPH oxidase and a neuroprotectant in mice after cerebral ischemia. J Neurosci 29: 14779–14789, 2009.
39.
Kondo TReaume AGHuang T-TCarlson EMurakami KChen SFHoffman EKScott RWEpstein CJChan PH. Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemiaJ Neurosci174180-41891997. 39. Kondo T, Reaume AG, Huang T-T, Carlson E, Murakami K, Chen SF, Hoffman EK, Scott RW, Epstein CJ, and Chan PH. Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci 17: 4180–4189, 1997.
40.
Lee BIChan PHKim GW. Metalloporphyrin-based superoxide dismutase mimic attenuates the nuclear translocation of apoptosis-inducing factor and the subsequent DNA fragmentation after permanent focal cerebral ischemia in mice [Erratum: Stroke 37:576, 2006]Stroke362712-27172005. 40. Lee BI, Chan PH, and Kim GW. Metalloporphyrin-based superoxide dismutase mimic attenuates the nuclear translocation of apoptosis-inducing factor and the subsequent DNA fragmentation after permanent focal cerebral ischemia in mice [Erratum: Stroke 37:576, 2006]. Stroke 36: 2712–2717, 2005.
41.
Leker RRAharonowiz MGreig NHOvadia H. The role of p53-induced apoptosis in cerebral ischemia: effects of the p53 inhibitor pifithrin αExp Neurol187478-4862004. 41. Leker RR, Aharonowiz M, Greig NH, and Ovadia H. The role of p53-induced apoptosis in cerebral ischemia: effects of the p53 inhibitor pifithrin α. Exp Neurol 187: 478–486, 2004.
42.
Lipton P. Ischemic cell death in brain neuronsPhysiol Rev791431-15681999. 42. Lipton P. Ischemic cell death in brain neurons. Physiol Rev 79: 1431–1568, 1999.
43.
Lo EHDalkara TMoskowitz MA. Mechanisms, challenges and opportunities in strokeNat Rev Neurosci4399-4152003. 43. Lo EH, Dalkara T, and Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4: 399–415, 2003.
44.
Luo YKuo C-CShen HChou JGreig NHHoffer BJWang Y. Delayed treatment with a p53 inhibitor enhances recovery in stroke brainAnn Neurol65520-5302009. 44. Luo Y, Kuo C-C, Shen H, Chou J, Greig NH, Hoffer BJ, and Wang Y. Delayed treatment with a p53 inhibitor enhances recovery in stroke brain. Ann Neurol 65: 520–530, 2009.
45.
Maier CMHsieh LCrandall TNarasimhan PChan PH. Evaluating therapeutic targets for reperfusion-related brain hemorrhageAnn Neurol59929-9382006. 45. Maier CM, Hsieh L, Crandall T, Narasimhan P, and Chan PH. Evaluating therapeutic targets for reperfusion-related brain hemorrhage. Ann Neurol 59: 929–938, 2006.
46.
Maier CMHsieh LYu FBracci PChan PH. Matrix metalloproteinase-9 and myeloperoxidase expression. Quantitative analysis by antigen immunohistochemistry in a model of transient focal cerebral ischemiaStroke351169-11742004. 46. Maier CM, Hsieh L, Yu F, Bracci P, and Chan PH. Matrix metalloproteinase-9 and myeloperoxidase expression. Quantitative analysis by antigen immunohistochemistry in a model of transient focal cerebral ischemia. Stroke 35: 1169–1174, 2004.
47.
Momand JZambetti GPOlson DCGeorge DLevine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivationCell691237-12451992. 47. Momand J, Zambetti GP, Olson DC, George D, and Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237–1245, 1992.
48.
Murakami KKondo TEpstein CJChan PH. Overexpression of CuZn-superoxide dismutase reduces hippocampal injury after global ischemia in transgenic mice [Erratum: Stroke 28:2573, 1997]Stroke281797-18041997. 48. Murakami K, Kondo T, Epstein CJ, and Chan PH. Overexpression of CuZn-superoxide dismutase reduces hippocampal injury after global ischemia in transgenic mice [Erratum: Stroke 28:2573, 1997]. Stroke 28: 1797–1804, 1997.
49.
Murakami KKondo TKawase MLi YSato SChen SFChan PH. Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiencyJ Neurosci18205-2131998. 49. Murakami K, Kondo T, Kawase M, Li Y, Sato S, Chen SF, and Chan PH. Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J Neurosci 18: 205–213, 1998.
50.
Narasimhan PLiu JSong YSMassengale JLChan PH. VEGF stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditionsStroke401467-14732009. 50. Narasimhan P, Liu J, Song YS, Massengale JL, and Chan PH. VEGF stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditions. Stroke 40: 1467–1473, 2009.
51.
Niizuma KEndo HNito CMyer DJChan PH. Potential role of PUMA in delayed death of hippocampal CA1 neurons after transient global cerebral ischemiaStroke40618-6252009. 51. Niizuma K, Endo H, Nito C, Myer DJ, and Chan PH. Potential role of PUMA in delayed death of hippocampal CA1 neurons after transient global cerebral ischemia. Stroke 40: 618–625, 2009.
52.
Niizuma KEndo HNito CMyer DJKim GSChan PH. The PIDDosome mediates delayed death of hippocampal CA1 neurons after transient global cerebral ischemia in ratsProc Natl Acad Sci U S A10516369-163742008. 52. Niizuma K, Endo H, Nito C, Myer DJ, Kim GS, and Chan PH. The PIDDosome mediates delayed death of hippocampal CA1 neurons after transient global cerebral ischemia in rats. Proc Natl Acad Sci U S A 105: 16369–16374, 2008.
53.
Niizuma KYoshioka HChen HKim GSJung JEKatsu MOkami NChan PH. Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemiaBiochim Biophys Acta180292-992010. 53. Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M, Okami N, and Chan PH. Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 1802: 92–99, 2010.
54.
Nishi TMaier CMHayashi TSaito AChan PH. Superoxide dismutase 1 overexpression reduces MCP-1 and MIP-1α expression after transient focal cerebral ischemiaJ Cereb Blood Flow Metab251312-13242005. 54. Nishi T, Maier CM, Hayashi T, Saito A, and Chan PH. Superoxide dismutase 1 overexpression reduces MCP-1 and MIP-1α expression after transient focal cerebral ischemia. J Cereb Blood Flow Metab 25: 1312–1324, 2005.
55.
Nito CKamada HEndo HNiizuma KMyer DJChan PH. Role of the p38 mitogen-activated protein kinase/cytosolic phospholipase A2 signaling pathway in blood-brain barrier disruption after focal cerebral ischemia and reperfusionJ Cereb Blood Flow Metab281686-16962008. 55. Nito C, Kamada H, Endo H, Niizuma K, Myer DJ, and Chan PH. Role of the p38 mitogen-activated protein kinase/cytosolic phospholipase A2 signaling pathway in blood-brain barrier disruption after focal cerebral ischemia and reperfusion. J Cereb Blood Flow Metab 28: 1686–1696, 2008.
56.
Noshita NSugawara TFujimura MMorita-Fujimura YChan PH. Manganese superoxide dismutase affects cytochrome c release and caspase-9 activation after transient focal cerebral ischemia in miceJ Cereb Blood Flow Metab21557-5672001. 56. Noshita N, Sugawara T, Fujimura M, Morita-Fujimura Y, and Chan PH. Manganese superoxide dismutase affects cytochrome c release and caspase-9 activation after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 21: 557–567, 2001.
57.
Noshita NSugawara TLewén AHayashi TChan PH. Copper-zinc superoxide dismutase affects Akt activation after transient focal cerebral ischemia in miceStroke341513-15182003. 57. Noshita N, Sugawara T, Lewén A, Hayashi T, and Chan PH. Copper-zinc superoxide dismutase affects Akt activation after transient focal cerebral ischemia in mice. Stroke 34: 1513–1518, 2003.
58.
Nozaki KNishimura MHashimoto N. Mitogen-activated protein kinases and cerebral ischemiaMol Neurobiol231-192001. 58. Nozaki K, Nishimura M, and Hashimoto N. Mitogen-activated protein kinases and cerebral ischemia. Mol Neurobiol 23: 1–19, 2001.
59.
Ridder DASchwaninger M. NF-κB signaling in cerebral ischemiaNeuroscience158995-10062009. 59. Ridder DA and Schwaninger M. NF-κB signaling in cerebral ischemia. Neuroscience 158: 995–1006, 2009.
60.
Saito AHayashi TOkuno SFerrand-Drake MChan PH. Overexpression of copper/zinc superoxide dismutase in transgenic mice protects against neuronal cell death after transient focal ischemia by blocking activation of the Bad cell death signaling pathwayJ Neurosci231710-17182003. 60. Saito A, Hayashi T, Okuno S, Ferrand-Drake M, and Chan PH. Overexpression of copper/zinc superoxide dismutase in transgenic mice protects against neuronal cell death after transient focal ischemia by blocking activation of the Bad cell death signaling pathway. J Neurosci 23: 1710–1718, 2003.
61.
Saito AHayashi TOkuno SNishi TChan PH. Modulation of p53 degradation via MDM2-mediated ubiquitylation and the ubiquitin–proteasome system during reperfusion after stroke: role of oxidative stressJ Cereb Blood Flow Metab25267-2802005. 61. Saito A, Hayashi T, Okuno S, Nishi T, and Chan PH. Modulation of p53 degradation via MDM2-mediated ubiquitylation and the ubiquitin–proteasome system during reperfusion after stroke: role of oxidative stress. J Cereb Blood Flow Metab 25: 267–280, 2005.
62.
Saito AHayashi TOkuno SNishi TChan PH. Modulation of proline-rich Akt substrate survival signaling pathways by oxidative stress in mouse brains after transient focal cerebral ischemiaStroke37513-5172006. 62. Saito A, Hayashi T, Okuno S, Nishi T, and Chan PH. Modulation of proline-rich Akt substrate survival signaling pathways by oxidative stress in mouse brains after transient focal cerebral ischemia. Stroke 37: 513–517, 2006.
63.
Saito ANarasimhan PHayashi TOkuno SFerrand-Drake MChan PH. Neuroprotective role of a proline-rich Akt substrate in apoptotic neuronal cell death after stroke: relationships with nerve growth factorJ Neurosci241584-15932004. 63. Saito A, Narasimhan P, Hayashi T, Okuno S, Ferrand-Drake M, and Chan PH. Neuroprotective role of a proline-rich Akt substrate in apoptotic neuronal cell death after stroke: relationships with nerve growth factor. J Neurosci 24: 1584–1593, 2004.
64.
Shuaib ALees KRLyden PGrotta JDavalos ADavis SMDiener H-CAshwood TWasiewski WWEmeribe UInvestigators SIT. NXY-059 for the treatment of acute ischemic strokeN Engl J Med357562-5712007. 64. Shuaib A, Lees KR, Lyden P, Grotta J, Davalos A, Davis SM, Diener H-C, Ashwood T, Wasiewski WW, Emeribe U, and Investigators SIT. NXY-059 for the treatment of acute ischemic stroke. N Engl J Med 357: 562–571, 2007.
65.
Song YSLee Y-SChan PH. Oxidative stress transiently decreases the IKK complex (IKKα, β, and γ), an upstream component of NF-κB signaling, after transient focal cerebral ischemia in miceJ Cereb Blood Flow Metab251301-13112005. 65. Song YS, Lee Y-S, and Chan PH. Oxidative stress transiently decreases the IKK complex (IKKα, β, and γ), an upstream component of NF-κB signaling, after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 25: 1301–1311, 2005.
66.
Song YSLee Y-SNarasimhan PChan PH. Reduced oxidative stress promotes NF-κB-mediated neuroprotective gene expression after transient focal cerebral ischemia: lymphocytotrophic cytokines and antiapoptotic factorsJ Cereb Blood Flow Metab27764-7752007. 66. Song YS, Lee Y-S, Narasimhan P, and Chan PH. Reduced oxidative stress promotes NF-κB-mediated neuroprotective gene expression after transient focal cerebral ischemia: lymphocytotrophic cytokines and antiapoptotic factors. J Cereb Blood Flow Metab 27: 764–775, 2007.
67.
Sugawara TFujimura MMorita-Fujimura YKawase MChan PH. Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemiaJ Neurosci19RC391-61999. 67. Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, and Chan PH. Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci 19:RC39: 1–6, 1999.
68.
Sugawara TNoshita NLewén AGasche YFerrand-Drake MFujimura MMorita-Fujimura YChan PH. Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activationJ Neurosci22209-2172002. 68. Sugawara T, Noshita N, Lewén A, Gasche Y, Ferrand-Drake M, Fujimura M, Morita-Fujimura Y, and Chan PH. Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J Neurosci 22: 209–217, 2002.
69.
Suh SWGum ETHamby AMChan PHSwanson RA. Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidaseJ Clin Invest117910-9182007. 69. Suh SW, Gum ET, Hamby AM, Chan PH, and Swanson RA. Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest 117: 910–918, 2007.
70.
Suh SWShin BSMa HVan Hoecke MBrennan AMYenari MASwanson RA. Glucose and NADPH oxidase drive neuronal superoxide formation in strokeAnn Neurol64654-6632008. 70. Suh SW, Shin BS, Ma H, Van Hoecke M, Brennan AM, Yenari MA, and Swanson RA. Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann Neurol 64: 654–663, 2008.
71.
Tang XNCairns BCairns NYenari MA. Apocynin improves outcome in experimental stroke with a narrow dose rangeNeuroscience154556-5622008. 71. Tang XN, Cairns B, Cairns N, and Yenari MA. Apocynin improves outcome in experimental stroke with a narrow dose range. Neuroscience 154: 556–562, 2008.
72.
Walder CEGreen SPDarbonne WCMathias JRae JDinauer MCCurnutte JTThomas GR. Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidaseStroke282252-22581997. 72. Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC, Curnutte JT, and Thomas GR. Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28: 2252–2258, 1997.
73.
Wang QTompkins KDSimonyi AKorthuis RJSun AYSun GY. Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampusBrain Res1090182-1892006. 73. Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, and Sun GY. Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res 1090: 182–189, 2006.
74.
Wang X. The expanding role of mitochondria in apoptosisGenes Dev152922-29332001. 74. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev 15: 2922–2933, 2001.
75.
Yang GChan PHChen JCarlson EChen SFWeinstein PEpstein CJKamii H. Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemiaStroke25165-1701994. 75. Yang G, Chan PH, Chen J, Carlson E, Chen SF, Weinstein P, Epstein CJ, and Kamii H. Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25: 165–170, 1994.
76.
Yoshida HKong Y-YYoshida RElia AJHakem AHakem RPenninger JMMak TW. Apaf1 is required for mitochondrial pathways of apoptosis and brain developmentCell94739-7501998. 76. Yoshida H, Kong Y-Y, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, and Mak TW. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94: 739–750, 1998.
77.
Yoshioka HNiizuma KKatsu MOkami NSakata HKim GSNarasimhan PChan PH. NADPH oxidase mediates striatal neuronal injury after transient global cerebral ischemiaJ Cereb Blood Flow Metab2010[Epub ahead of print]. 77. Yoshioka H, Niizuma K, Katsu M, Okami N, Sakata H, Kim GS, Narasimhan P, and Chan PH. NADPH oxidase mediates striatal neuronal injury after transient global cerebral ischemia. J Cereb Blood Flow Metab 2010 [Epub ahead of print].
78.
Yu JZhang L. PUMA, a potent killer with or without p53Oncogene27S71-S832009. 78. Yu J and Zhang L. PUMA, a potent killer with or without p53. Oncogene 27: S71–S83, 2009.
79.
Zha JHarada HYang EJockel JKorsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-XLCell87619-6281996. 79. Zha J, Harada H, Yang E, Jockel J, and Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-XL. Cell 87: 619–628, 1996.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 14Issue Number 8April 15, 2011
Pages: 1505 - 1517
PubMed: 20812869

History

Published in print: April 15, 2011
Published online: 20 March 2011
Published ahead of print: 9 January 2011
Published ahead of production: 2 September 2010
Accepted: 2 September 2010
Received: 11 August 2010

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Hai Chen
Departments of Neurosurgery and Neurology and Neurological Sciences and Program in Neurosciences, Stanford University School of Medicine, Stanford, California.
Hideyuki Yoshioka
Departments of Neurosurgery and Neurology and Neurological Sciences and Program in Neurosciences, Stanford University School of Medicine, Stanford, California.
Gab Seok Kim
Departments of Neurosurgery and Neurology and Neurological Sciences and Program in Neurosciences, Stanford University School of Medicine, Stanford, California.
Joo Eun Jung
Departments of Neurosurgery and Neurology and Neurological Sciences and Program in Neurosciences, Stanford University School of Medicine, Stanford, California.
Nobuya Okami
Departments of Neurosurgery and Neurology and Neurological Sciences and Program in Neurosciences, Stanford University School of Medicine, Stanford, California.
Hiroyuki Sakata
Departments of Neurosurgery and Neurology and Neurological Sciences and Program in Neurosciences, Stanford University School of Medicine, Stanford, California.
Carolina M. Maier
Departments of Neurosurgery and Neurology and Neurological Sciences and Program in Neurosciences, Stanford University School of Medicine, Stanford, California.
Purnima Narasimhan
Departments of Neurosurgery and Neurology and Neurological Sciences and Program in Neurosciences, Stanford University School of Medicine, Stanford, California.
Christina E. Goeders
Departments of Neurosurgery and Neurology and Neurological Sciences and Program in Neurosciences, Stanford University School of Medicine, Stanford, California.
Pak H. Chan
Departments of Neurosurgery and Neurology and Neurological Sciences and Program in Neurosciences, Stanford University School of Medicine, Stanford, California.

Notes

Address correspondence to:Dr. Pak H. ChanDepartment of NeurosurgeryStanford University School of Medicine1201 Welch Road, MSLS #P314Stanford, CA 94305-5487E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top