The Survival and Resistance of Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae to Simulated Outer Space Solar Radiation
Abstract
Solar radiation is among the most prominent stress factors organisms face during space travel and possibly on other planets. Our analysis of three different halophilic archaea, namely Halobacterium salinarum NRC-1, Halococcus morrhuae, and Halococcus hamelinensis, which were exposed to simulated solar radiation in either dried or liquid state, showed tremendous differences in tolerance and survivability. We found that Hcc. hamelinensis is not able to withstand high fluences of simulated solar radiation compared to the other tested organisms. These results can be correlated to significant differences in genomic integrity following exposure, as visualized by random amplified polymorphic DNA (RAPD)–PCR. In contrast to the other two tested strains, Hcc. hamelinensis accumulates compatible solutes such as trehalose for osmoprotection. The addition of 100 mM trehalose to the growth medium of Hcc. hamelinensis improved its survivability following exposure. Exposure of cells in liquid at different temperatures suggests that Hbt. salinarum NRC-1 is actively repairing cellular and DNA damage during exposure, whereas Hcc. morrhuae exhibits no difference in survival. For Hcc. morrhuae, the high resistance against simulated solar radiation may be explained with the formation of cell clusters. Our experiments showed that these clusters shield cells on the inside against simulated solar radiation, which results in better survival rates at higher fluences when compared to Hbt. salinarum NRC-1 and Hcc. hamelinensis. Overall, this study shows that some halophilic archaea are highly resistant to simulated solar radiation and that they are of high astrobiological significance. Key Words: Halophiles—Solar radiation—Stress resistance—Survival. Astrobiology 15, 987–997.
Get full access to this article
View all available purchase options and get full access to this article.
References
Allen M.A., Goh F., Leuko S., Echigo A., Mizuki T., Usami R., Kamekura M., Neilan B.A., and Burns B.P. (2008) Haloferax elongans sp. nov. and Haloferax mucosum sp. nov., isolated from microbial mats from Hamelin Pool, Shark Bay, Australia. Int J Syst Evol Microbiol 58:798–802.
Atienzar F.A. and Jha A.N. (2006) The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutat Res 613:76–102.
Atienzar F.A., Venier P., Jha A.N., and Depledge M.H. (2002) Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations. Mutat Res 521:151–163.
Baliga N.S., Bjork S.J., Bonneau R., Pan M., Iloanusi C., Kottemann M.C.H., Hood L., and DiRuggiero J. (2004) Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res 14:1025–1035.
Beblo K., Douki T., Schmalz G., Rachel R., Wirth R., Huber H., Reitz G., and Rettberg P. (2011) Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation. Arch Microbiol 193:797–809.
Benaroudj N., Lee D.H., and Goldberg A.L. (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276:24261–24267.
Bodaker I., Beja O., Sharon I., Feingersch R., Rosenberg M., Oren A., Hindiyeh M.Y., and Malkawi H.I. (2009) Archaeal diversity in the Dead Sea: microbial survival under increasingly harsh conditions. Natural Resources and Environmental Issues 15:25.
Boubriak I., Ng W.L., DasSarma P., Das Sarma S., Crowley D.J., and McCready S.J. (2008) Transcriptional responses to biologically relevant doses of UV-B radiation in the model archaeon, Halobacterium sp. NRC-1. Saline Systems 4.
Burns B.P., Goh F., Allen M., and Neilan B.A. (2004) Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ Microbiol 6:1096–1101.
Cadet J., Sage E., and Douki T. (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 571:3–17.
Cadet J., Grand A., and Douki T. (2014) Solar UV radiation-induced DNA bipyrimidine photoproducts: formation and mechanistic insights. Top Curr Chem 356:249–275.
Coker J.A., DasSarma P., Kumar J., Müller J.A., and DasSarma S. (2007) Transcriptional profiling of the model archaeon Halobacterium sp. NRC-1: responses to changes in salinity and temperature. Saline Systems 3.
Coohill T.P. (1996) Stratospheric ozone loss, ultraviolet effects and action spectroscopy. Adv Space Res 18:27–33.
Coohill T.P. and Sagripanti J.L. (2009) Bacterial inactivation by solar ultraviolet radiation compared with sensitivity to 254 nm radiation. Photochem Photobiol 85:1043–1052.
Crowley D.J., Boubriak I., Berquist B.R., Clark M., Richard E., Sullivan L., DasSarma S., and McCready S. (2006) The uvrA, uvrB and uvrC genes are required for repair of ultraviolet light induced DNA photoproducts in Halobacterium sp. NRC-1. Saline Systems 2.
deVeaux L.C., Müller J.A., Smith J., Petrisko J., Wells D.P., and DasSarma S. (2007) Extremely radiation-resistant mutants of a halophilic archaeon with increased single-stranded DNA-binding protein (RPA) gene expression. Radiat Res 168:507–514.
Dornmayr-Pfaffenhuemer M., Legat A., Schwimbersky K., Fendrian S., and Stan-Lotter H. (2011) Responses of haloarchaea to simulated microgravity. Astrobiology 11:199–205.
Douki T. and Cadet J. (2001) Individual determination of the yield of the main UV-induced dimeric pyrimidine photoproducts in DNA suggest a high mutagenicity of CC photolesions. Biochemistry 40:2495–2501.
Elbein A.D., Pan Y.T., Pastuszak I., and Carroll D. (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17–27.
Fendrihan S., Bérces A., Lammer H., Musso M., Rontó G., Polacsek T.K., Holzinger A., Kolb C., and Stan-Lotter H. (2009) Investigating the effects of simulated martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic archaebacteria. Astrobiology 9:104–122.
Fischer E., Martínez G.M., Elliot H.M., and Rennó N.O. (2012) Experimental evidence for the formation of liquid saline water on Mars. Geophys Res Lett 41:4456–4462.
Goh F., Leuko S., Allen M.A., Bowman J.P., Kamekura M., Neilan B.A., and Burns B.P. (2006) Halococcus hamelinensis sp. nov., a novel halophilic archaeon isolated from stromatolites in Shark Bay, Australia. Int J Syst Evol Microbiol 56:1323–1329.
Goh F., Jeon Y.J., Barrow K., Neilan B.A., and Burns B.P. (2011) Osmoadaptive strategies of the archaeon Halococcus hamelinensis isolated from a hypersaline stromatolite environment. Astrobiology 11:529–536.
Gudhka R.K., Neilan B.A., and Burns B.P. (2015) Adaptation, ecology, and evolution of the halophilic stromatolite archaeon Halococcus hamelinensis inferred through genome analysis. Archaea 2015.
Harm W. (1980) Biological Effects of Ultraviolet Radiation, Cambridge University Press, Cambridge, UK.
Horneck G., Moeller R., Cadet J., Douki T., Mancinelli R.L., Nicholson W.L., Panitz C., Rabbow E., Rettberg P., Spry A., Stackebrandt E., Vaishampayan P., and Venkateswaran K.J. (2012) Resistance of bacterial endospores to outer space for planetary protection purposes—experiment PROTECT of the EXPOSE-E mission. Astrobiology 12:445–456.
Kawaguchi Y., Yang Y., Kawashiri N., Shiraishi K., Takasu M., Narumi I., Satoh K., Hashimoto H., Nakagawa K., Tanigawa Y., Momoki Y., Tanabe M., Sugino T., Takahashi Y., Shimizu Y., Yoshida S., Kobayashi K., Yokobori S., and Yamagishi A. (2013) The possible interplanetary transfer of microbes: assessing the viability of Deinococcus spp. under the ISS environmental conditions for performing exposure experiments of microbes in the Tanpopo mission. Orig Life Evol Biosph 43:411–428.
Kawakami Y., Ito T., Kamekura M., and Nakayama M. (2005) Ca2+-dependent cell aggregation of halophilic archaeon, Halobacterium salinarum. J Biosci Bioeng 6:681–684.
Kempf B. and Bremer E. (1998) Uptake and synthesis of compatible solutes as microbial stress response to high-osmolality environments. Arch Microbiol 170:319–330.
Kottemann M., Kish A., Iloanusi C., Bjork S., and DiRuggiero J. (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NCR-1 to desiccation and gamma irradiation. Extremophiles 9:219–227.
Landis G.A. (2001) Martian waters: are there extant halobacteria on Mars? Astrobiology 1:161–164.
Leuko S., Raftery M.J., Burns B.P., Walter M.R., and Neilan B.A. (2009) Global protein-level responses of Halobacterium salinarum NRC-1 to prolonged changes in external sodium chloride concentrations. J Proteome Res 8:2218–2225.
Leuko S., Neilan B.A., Burns B.P., Walter M.R., and Rothschild L.J. (2011) Molecular assessment of UVC radiation-induced DNA damage repair in the stromatolitic halophilic archaeon, Halococcus hamelinensis. J Photochem Photobiol B 102:140–145.
Leuko S., Rettberg P., Pontifex A.L., and Burns B.P. (2014) On the response of halophilic archaea to space conditions. Life 4:66–76.
Mancinelli R.L., White M.R., and Rothschild L.J. (1998) BIOPAN-survival I: exposure of the osmophiles Synechococcus sp. (Nageli) and Haloarcula sp. to the space environment. Adv Space Res 22:327–334.
Mancinelli R.L., Landheim R., Sánchez-Porro C., Dornmayr-Pfaffenhuemer M., Gruber C., Legat A., Ventosa A., Radax C., Ihara K., White M.R., and Stan-Lotter H. (2009) Halorubrum chaoviator sp. nov., a haloarchaeon isolated from sea salts in Baja California, Mexico, Western Australia and Naxos, Greece. Int J Syst Evol Mirobiol 59:1908–1913.
Matallana-Surget S., Joux F., Raftery M.J., and Cavicchioli R. (2009) The response of the marine bacterium Sphingopyxis alaskensis to solar radiation assessed by quantitative proteomics. Environ Microbiol 11:2660–2675.
Mattimore V. and Battista J.R. (1995) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637.
McCready S., Mueller J.A., Boubriak I., Berquist B.R., Ng W.L., and DasSarma S. (2005) UV irradiation induces homologous recombination genes in the model archaeon, Halobacterium sp. NRC-1. Saline Systems 1.
Moeller R., Reitz G., Douki T., Cadet J., Horneck G., and Stan-Lotter H. (2010) UV photoreactions of the extremely haloalkaliphilic eurarchaeon Natronomonas pharaonis. FEMS Microbiol Ecol 73:271–277.
Moschetti G., Aponte M., Blaiotta G., Casaburi A., Chiurazzi M., Ventorino V., and Villani F. (2006) Characterization of halophilic archaea isolated from different hypersaline ecosystems. Ann Microbiol 56:119–127.
Norton C.F., McGenity T.J., and Grant W.D. (1993) Archaeal halophiles (halobacteria) from two British salt mines. J Gen Microbiol 139:1077–1081.
Oren A. (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems 4.
Osman S., Peeters Z., La Duc M.T., Mancinelli R., Ehrenfreud P., and Venkateswaran K. (2008) Effect of shadowing on survival of bacteria under conditions simulating the martian atmosphere and UV radiation. Appl Environ Microbiol 74:959–970.
Pašić L., Bartual S.G., Ulrih N.P., Grabnar M., and Velikonja B.H. (2005) Diversity of halophilic archaea in the crystallizers of an Adriatic solar saltern. FEMS Microbiol Ecol 54:491–498.
Pattison D.I. and Davies M.J. (2006) Actions of ultraviolet light on cellular structures. EXS 96:131–157.
Rabbow E., Rettberg P., Panitz C., Drescher J., Horneck G., and Reitz G. (2005) SSIOUX—Space Simulation for Investigating Organics, Evolution and Exobiology. Adv Space Res 36:297–302.
Rabbow E., Horneck G., Rettberg P., Schott J.U., Panitz C., L'Afflitto A., von Heise-Rotenburg R., Willnecker R., Baglioni P., Hatton J., Dettmann J., Demets R., and Reitz G. (2009) EXPOSE, an astrobiological exposure facility on the International Space Station—from proposal to flight. Orig Life Evol Biosph 39:581–598.
Rabbow E., Rettberg P., Barczyk S., Bohmeier M., Parpart A., Panitz C., Horneck G., Burfeindt J., Molter F., Jaramillo E., Pereira C., Weiß P., Willnecker R., Demets R., Dettmann J., and Reitz G. (2015) The astrobiological mission EXPOSE R on board of the International Space Station. International Journal of Astrobiology 14:3–16.
Radax C., Gruber C., and Stan-Lotter H. (2001) Novel haloarchaeal 16S rRNA gene sequences from Alpine permo-triassic rock salt. Extremophiles 5:221–228.
Rhodes M.E., Oren A., and House C.H. (2012) Dynamics and persistence of Dead Sea microbial populations as shown by high-throughput sequencing of rRNA. Appl Environ Microbiol 78:2489–2492.
Roessler M. and Müller V. (2001) Osmoadaptation in bacteria and archaea: common principles and differences. Environ Microbiol 3:743–754.
Rolfsmeier M.L., Laughery M.F., and Haseltine C.A. (2010) Repair of DNA double-strand breaks following UV damage in three Sulfolobus solfataricus strains. J Bacteriol 192:4954–4962.
Rothschild L.J. and Mancinelli R.L. (2001) Life in extreme environments. Nature 409:1092–1101.
Santos A.L., Oliveira V., Baptista I., Henriques I., Gomes N.C.M., Almeida A., Correia A., and Cunha A. (2013) Wavelength dependence of biological damage induced by UV radiation on bacteria. Arch Microbiol 195:63–74.
Slade D., Lindner A.B., Paul G., and Radman M. (2009) Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 136:1044–1055.
Soppa J. (2013) Evolutionary advantages of polyploidy in halophilic archaea. Biochem Soc Trans 41:339–343.
Stan-Lotter H., Pfaffenhuemer M., Legat A., Busse H.J., Radax C., and Gruber C. (2002) Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. Int J Syst Evol Microbiol 52:1807–1814.
Stan-Lotter H., Radax C., Gruber C., Legat A., Pfaffenhuemer M., Wieland H., Leuko S., Weidler G., Koemle N., and Kargl G. (2003) Astrobiology with haloarchaea from Permo-Triassic rock salt. Astrobiology 1:271–284.
Tehei M., Franzetti B., Maurel M.C., Vergne J., Hountondji C., and Zaccai G. (2002) The search for traces of life: the protective effect of salt on biological molecules. Extremophiles 6:427–430.
Tillett D. and Neilan B.A. (2000) Xanthogenate nucleic acid isolation from cultured and environmental cyanobacteria. J Phycol 36:251–258.
Webb K.M. and DiRuggiero J. (2012) Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea. Archaea 2012.
Wessel A.K., Arshad T.A., Fitzpatrick M., Conell J.L., Bonnecaze R.T., Shear J.B., and Whiteley M. (2014) Oxygen limitation within a bacterial aggregate. mBio 5.
Whitehead K., Kish A., Pan M., Kaur A., Reiss D.J., King N., Hohmann L., DiRuggiero J., and Baliga N.S. (2006) An integrated systems approach for understanding cellular responses to gamma radiation. Mol Syst Biol 2.
Yoshinaga K., Yoshioka H., Kurosaki H., Hirasawa M., Uritani M., and Hasegawa K. (1997) Protection by trehalose of DNA from radiation damage. Biosci Biotechnol Biochem 61:160–161.
Zeeshan M. and Prasad S.M. (2009) Differential response of growth, photosynthesis, antioxidant enzymes and lipid peroxidation to UV-B radiation in three cyanobacteria. S Afr J Bot 75:466–474.
Zerulla K. and Soppa J. (2014) Polyploidy in haloarchaea: advantages for growth and survival. Front Microbiol 5.
Zerulla K., Chimileski S., Näther D., Gophna U., Papke R.T., and Soppa J. (2014) DNA as a phosphate storage polymer and the alternative advantages of polyploidy for growth or survival. PLoS One 9.
Zhang Q. and Yan T. (2012) Correlation of intracellular trehalose concentration with desiccation resistance of soil Escherichia coli populations. Appl Environ Microbiol 78:7407–7413.
Zhou P., Wen J., Oren A., Chen M., and Wu M. (2007) Genomic survey of sequence features for ultraviolet tolerance in haloarchaea (family Halobacteriaceae). Genomics 90:103–109.
Zhu B., Furuki T., Okuda T., and Sakurai M. (2007) Natural DNA mixed with trehalose persists in B-form double stranding even in dry state. J Phys Chem B 111:5542–5544.
Information & Authors
Information
Published In
Copyright
Copyright 2015, Mary Ann Liebert, Inc.
History
Published online: 17 November 2015
Published ahead of print: 5 November 2015
Published in print: November 2015
Accepted: 18 September 2015
Received: 23 February 2015
Topics
Authors
Author Disclosure Statement
No competing financial interests exist.
Metrics & Citations
Metrics
Citations
Export Citation
Export citation
Select the format you want to export the citations of this publication.
View Options
Get Access
Access content
To read the fulltext, please use one of the options below to sign in or purchase access.⚠ Society Access
If you are a member of a society that has access to this content please log in via your society website and then return to this publication.