Research Article
No access
Published Online: 12 February 2013

Stromal Targeting of Sodium Iodide Symporter Using Mesenchymal Stem Cells Allows Enhanced Imaging and Therapy of Hepatocellular Carcinoma

Publication: Human Gene Therapy
Volume 24, Issue Number 3

Abstract

The tumor-homing property of mesenchymal stem cells (MSC) has lead to their use as delivery vehicles for therapeutic genes. The application of the sodium iodide symporter (NIS) as therapy gene allows noninvasive imaging of functional transgene expression by 123I-scintigraphy or PET-imaging, as well as therapeutic application of 131I or 188Re. Based on the critical role of the chemokine RANTES (regulated on activation, normal T-cell expressed and presumably secreted)/CCL5 secreted by MSCs in the course of tumor stroma recruitment, use of the RANTES/CCL5 promoter should allow tumor stroma-targeted expression of NIS after MSC-mediated delivery. Using a human hepatocellular cancer (HCC) xenograft mouse model (Huh7), we investigated distribution and tumor recruitment of RANTES-NIS-engineered MSCs after systemic injection by gamma camera imaging. 123I-scintigraphy revealed active MSC recruitment and CCL5 promoter activation in the tumor stroma of Huh7 xenografts (6.5% ID/g 123I, biological half-life: 3.7 hr, tumor-absorbed dose: 44.3 mGy/MBq). In comparison, 7% ID/g 188Re was accumulated in tumors with a biological half-life of 4.1 hr (tumor-absorbed dose: 128.7 mGy/MBq). Administration of a therapeutic dose of 131I or 188Re (55.5 MBq) in RANTES-NIS-MSC-treated mice resulted in a significant delay in tumor growth and improved survival without significant differences between 131I and 188Re. These data demonstrate successful stromal targeting of NIS in HCC tumors by selective recruitment of NIS-expressing MSCs and by use of the RANTES/CCL5 promoter. The resulting tumor-selective radionuclide accumulation was high enough for a therapeutic effect of 131I and 188Re opening the exciting prospect of NIS-mediated radionuclide therapy of metastatic cancer using genetically engineered MSCs as gene delivery vehicles.

Get full access to this article

View all available purchase options and get full access to this article.

References

Aquino J.B.Bolontrade M.F.Garcia M.G. et al.2010. Mesenchymal stem cells as therapeutic tools and gene carriers in liver fibrosis and hepatocellular carcinomaGene Ther.17692-708. Aquino, J.B., Bolontrade, M.F., Garcia, M.G., et al. (2010). Mesenchymal stem cells as therapeutic tools and gene carriers in liver fibrosis and hepatocellular carcinoma. Gene Ther. 17, 692–708.
Braunersreuther V.Viviani G.L.Mach F.Montecucco F.2012. Role of cytokines and chemokines in non-alcoholic fatty liver diseaseWorld J Gastroenterol.18727-735. Braunersreuther, V., Viviani, G.L., Mach, F., and Montecucco, F. (2012). Role of cytokines and chemokines in non-alcoholic fatty liver disease. World J Gastroenterol. 18, 727–735.
Conrad C.Gupta R.Mohan H. et al.2007. Genetically engineered stem cells for therapeutic gene deliveryCurr Gene Ther.7249-260. Conrad, C., Gupta, R., Mohan, H., et al. (2007). Genetically engineered stem cells for therapeutic gene delivery. Curr Gene Ther. 7, 249–260.
Conrad C.Huesemann Y.Niess H. et al.2011. Linking Transgene Expression of Engineerd Mesenchymal Stem Cells and Angiopoietin-1-induced Differentiation to Target Cancer AngiogenesisAnn Surg.253566-571. Conrad, C., Huesemann, Y., Niess, H., et al. (2011). Linking Transgene Expression of Engineerd Mesenchymal Stem Cells and Angiopoietin-1-induced Differentiation to Target Cancer Angiogenesis. Ann Surg. 253, 566–571.
Dadachova E.Bouzahzah B.Zuckier L.S.Pestell R.G.2002. Rhenium-188 as an alternative to iodine-131 for treatment of breast tumors expressing the sodium/iodide symporter (NIS)Nucl Med Biol.2913-18. Dadachova, E., Bouzahzah, B., Zuckier, L.S., and Pestell, R.G. (2002). Rhenium-188 as an alternative to iodine-131 for treatment of breast tumors expressing the sodium/iodide symporter (NIS). Nucl Med Biol. 29, 13–18.
Dadachova E.Nguyen A.Lin E.Y. et al.2005. Treatment with rhenium-188-perrhenate and iodine-131 of NIS-expressing mammary cancer in a mouse model remarkably inhibited tumor growthNucl Med Biol.32695-700. Dadachova, E., Nguyen, A., Lin, E.Y., et al. (2005). Treatment with rhenium-188-perrhenate and iodine-131 of NIS-expressing mammary cancer in a mouse model remarkably inhibited tumor growth. Nucl Med Biol. 32, 695–700.
Denhardt D.T.Lopez C.A.Rollo E.E. et al.1995. Osteopontin-induced modifications of cellular functionsAnn N Y Acad Sci.760127-142. Denhardt, D.T., Lopez, C.A., Rollo, E.E., et al. (1995). Osteopontin-induced modifications of cellular functions. Ann N Y Acad Sci. 760, 127–142.
Di Cosmo C.Liao X.H.Dumitrescu A.M. et al.2009. A thyroid hormone analog with reduced dependence on the monocarboxylate transporter 8 for tissue transportEndocrinology1504450-4458. Di Cosmo, C., Liao, X.H., Dumitrescu, A.M., et al. (2009). A thyroid hormone analog with reduced dependence on the monocarboxylate transporter 8 for tissue transport. Endocrinology 150, 4450–4458.
Dingli D.Russell S.J.Morris J.C.2003. In vivo imaging and tumor therapy with the sodium iodide symporterJ Cell Biochem.901079-1086. Dingli, D., Russell, S.J., and Morris, J.C. (2003). In vivo imaging and tumor therapy with the sodium iodide symporter. J Cell Biochem. 90, 1079–1086.
Dwyer R.M.Bergert E.R.O'Connor M K. et al.2005a. In vivo radioiodide imaging and treatment of breast cancer xenografts after MUC1-driven expression of the sodium iodide symporterClin Cancer Res.111483-1489. Dwyer, R.M., Bergert, E.R., O'Connor M, K., et al. (2005a). In vivo radioiodide imaging and treatment of breast cancer xenografts after MUC1-driven expression of the sodium iodide symporter. Clin Cancer Res. 11, 1483–1489.
Dwyer R.M.Schatz S.M.Bergert E.R. et al.2005b. A preclinical large animal model of adenovirus-mediated expression of the sodium-iodide symporter for radioiodide imaging and therapy of locally recurrent prostate cancerMol Ther.12835-841. Dwyer, R.M., Schatz, S.M., Bergert, E.R., et al. (2005b). A preclinical large animal model of adenovirus-mediated expression of the sodium-iodide symporter for radioiodide imaging and therapy of locally recurrent prostate cancer. Mol Ther. 12, 835–841.
Dwyer R.M.Khan S.Barry F.P. et al.2010. Advances in mesenchymal stem cell-mediated gene therapy for cancerStem Cell Res Ther.125. Dwyer, R.M., Khan, S., Barry, F.P., et al. (2010). Advances in mesenchymal stem cell-mediated gene therapy for cancer. Stem Cell Res Ther. 1, 25.
Dwyer R.M.Ryan J.Havelin R.J. et al.2011. Mesenchymal Stem Cell-mediated delivery of the sodium iodide symporter supports radionuclide imaging and treatment of breast cancerStem Cells291149-1157. Dwyer, R.M., Ryan, J., Havelin, R.J., et al. (2011). Mesenchymal Stem Cell-mediated delivery of the sodium iodide symporter supports radionuclide imaging and treatment of breast cancer. Stem Cells 29, 1149–1157.
Edelmann S.L.Nelson P.J.Brocker T.2011. Comparative promoter analysis in vivo: identification of a dendritic cell-specific promoter moduleBlood118e40-e49. Edelmann, S.L., Nelson, P.J., and Brocker, T. (2011). Comparative promoter analysis in vivo: identification of a dendritic cell-specific promoter module. Blood 118, e40–e49.
Grone H.J.Weber C.Weber K.S. et al.1999. Met-RANTES reduces vascular and tubular damage during acute renal transplant rejection: blocking monocyte arrest and recruitmentFASEB J.131371-1383. Grone, H.J., Weber, C., Weber, K.S., et al. (1999). Met-RANTES reduces vascular and tubular damage during acute renal transplant rejection: blocking monocyte arrest and recruitment. FASEB J. 13, 1371–1383.
Groot-Wassink T.Aboagye E.O.Wang Y. et al.2004. Quantitative imaging of Na/I symporter transgene expression using positron emission tomography in the living animalMol. Therapy9436-442. Groot-Wassink, T., Aboagye, E.O., Wang, Y., et al. (2004). Quantitative imaging of Na/I symporter transgene expression using positron emission tomography in the living animal. Mol. Therapy 9, 436–442.
Herve J.Cunha A.S.Liu B. et al.2008. Internal radiotherapy of liver cancer with rat hepatocarcinoma-intestine-pancreas gene as a liver tumor-specific promoterHum Gene Ther.19915-926. Herve, J., Cunha, A.S., Liu, B., et al. (2008). Internal radiotherapy of liver cancer with rat hepatocarcinoma-intestine-pancreas gene as a liver tumor-specific promoter. Hum Gene Ther. 19, 915–926.
Hingorani M.Spitzweg C.Vassaux G. et al.2010. The biology of the sodium iodide symporter and its potential for targeted gene deliveryCurr. Cancer Drug Targets10242-267. Hingorani, M., Spitzweg, C., Vassaux, G., et al. (2010). The biology of the sodium iodide symporter and its potential for targeted gene delivery. Curr. Cancer Drug Targets 10, 242–267.
Kakinuma H.Bergert E.R.Spitzweg C. et al.2003. Probasin promoter (ARR(2)PB)-driven, prostate-specific expression of the human sodium iodide symporter (h-NIS) for targeted radioiodine therapy of prostate cancerCancer Res.637840-7844. Kakinuma, H., Bergert, E.R., Spitzweg, C., et al. (2003). Probasin promoter (ARR(2)PB)-driven, prostate-specific expression of the human sodium iodide symporter (h-NIS) for targeted radioiodine therapy of prostate cancer. Cancer Res. 63, 7840–7844.
Karar J.Maity A.2009. Modulating the tumor microenvironment to increase radiation responsivenessCancer Biol Ther.81994-2001. Karar, J., and Maity, A. (2009). Modulating the tumor microenvironment to increase radiation responsiveness. Cancer Biol Ther. 8, 1994–2001.
Karnoub A.E.Dash A.B.Vo A.P. et al.2007. Mesenchymal stem cells within tumour stroma promote breast cancer metastasisNature449557-563. Karnoub, A.E., Dash, A.B., Vo, A.P., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563.
Klopp A.H.Spaeth E.L.Dembinski J.L. et al.2007. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironmentCancer Res.6711687-11695. Klopp, A.H., Spaeth, E.L., Dembinski, J.L., et al. (2007). Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res. 67, 11687–11695.
Klutz K.Russ V.Willhauck M.J. et al.2009. Targeted radioiodine therapy of neuroblastoma tumors following systemic nonviral delivery of the sodium iodide symporter geneClin Cancer Res.156079-6086. Klutz, K., Russ, V., Willhauck, M.J., et al. (2009). Targeted radioiodine therapy of neuroblastoma tumors following systemic nonviral delivery of the sodium iodide symporter gene. Clin Cancer Res. 15, 6079–6086.
Klutz K.Willhauck M.J.Wunderlich N. et al.2011. Sodium iodide symporter (NIS)-mediated radionuclide ((131)I, (188)Re) therapy of liver cancer after transcriptionally targeted intratumoral in vivo NIS gene deliveryHum Gene Ther.221403-1412. Klutz, K., Willhauck, M.J., Wunderlich, N., et al. (2011). Sodium iodide symporter (NIS)-mediated radionuclide ((131)I, (188)Re) therapy of liver cancer after transcriptionally targeted intratumoral in vivo NIS gene delivery. Hum Gene Ther. 22, 1403–1412.
Knoop K.Kolokythas M.Klutz K. et al.2011. Image-guided, tumor stroma-targeted 131I therapy of hepatocellular cancer after systemic mesenchymal stem cell-mediated NIS gene deliveryMol Ther.191704-1713. Knoop, K., Kolokythas, M., Klutz, K., et al. (2011). Image-guided, tumor stroma-targeted 131I therapy of hepatocellular cancer after systemic mesenchymal stem cell-mediated NIS gene delivery. Mol Ther. 19, 1704–1713.
Li H.Peng K.W.Dingli D. et al.2010. Oncolytic measles viruses encoding interferon beta and the thyroidal sodium iodide symporter gene for mesothelioma virotherapyCancer Gene Ther.17550-558. Li, H., Peng, K.W., Dingli, D., et al. (2010). Oncolytic measles viruses encoding interferon beta and the thyroidal sodium iodide symporter gene for mesothelioma virotherapy. Cancer Gene Ther. 17, 550–558.
Mascia F.Mariani V.Girolomoni G.Pastore S.2003. Blockade of the EGF receptor induces a deranged chemokine expression in keratinocytes leading to enhanced skin inflammationAm. J. Pathol.163303-312. Mascia, F., Mariani, V., Girolomoni, G., and Pastore, S. (2003). Blockade of the EGF receptor induces a deranged chemokine expression in keratinocytes leading to enhanced skin inflammation. Am. J. Pathol. 163, 303–312.
McAllister S.S.Gifford A.M.Greiner A.L. et al.2008. Systemic endocrine instigation of indolent tumor growth requires osteopontinCell133994-1005. McAllister, S.S., Gifford, A.M., Greiner, A.L., et al. (2008). Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 133, 994–1005.
Mi Z.Bhattacharya S.D.Kim V.M. et al.2011. Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasisCarcinogenesis32477-487. Mi, Z., Bhattacharya, S.D., Kim, V.M., et al. (2011). Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis 32, 477–487.
Nelson P.J.Kim H.T.Manning W.C. et al.1993. Genomic organization and transcriptional regulation of the RANTES chemokine geneJ Immunol.1512601-2612. Nelson, P.J., Kim, H.T., Manning, W.C., et al. (1993). Genomic organization and transcriptional regulation of the RANTES chemokine gene. J Immunol. 151, 2601–2612.
Niess H.Bao Q.Conrad C. et al.2011. Selective targeting of genetically engineered mesenchymal stem cells to tumor stroma microenvironments using tissue-specific suicide gene expression suppresses growth of hepatocellular carcinomaAnn Surg.254767-774. Niess, H., Bao, Q., Conrad, C., et al. (2011). Selective targeting of genetically engineered mesenchymal stem cells to tumor stroma microenvironments using tissue-specific suicide gene expression suppresses growth of hepatocellular carcinoma. Ann Surg. 254, 767–774.
Parkin D.M.Bray F.Ferlay J.Pisani P.2005. Global cancer statistics, 2002CA Cancer J. Clin.5574-108. Parkin, D.M., Bray, F., Ferlay, J., and Pisani, P. (2005). Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108.
Peerlinck I.Merron A.Baril P. et al.2009. Targeted radionuclide therapy using a Wnt-targeted replicating adenovirus encoding the Na/I symporterClin Cancer Res.156595-6601. Peerlinck, I., Merron, A., Baril, P., et al. (2009). Targeted radionuclide therapy using a Wnt-targeted replicating adenovirus encoding the Na/I symporter. Clin Cancer Res. 15, 6595–6601.
Pinilla S.Alt E.Abdul Khalek F.J. et al.2009. Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasionCancer Lett.28480-85. Pinilla, S., Alt, E., Abdul Khalek, F.J., et al. (2009). Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion. Cancer Lett. 284, 80–85.
Pinter M.Hucke F.Graziadei I. et al.2012. Advanced-Stage Hepatocellular Carcinoma: Transarterial Chemoembolization versus SorafenibRadiology263590-599. Pinter, M., Hucke, F., Graziadei, I., et al. (2012). Advanced-Stage Hepatocellular Carcinoma: Transarterial Chemoembolization versus Sorafenib. Radiology 263, 590–599.
Scholz I.V.Cengic N.Baker C.H. et al.2005. Radioiodine therapy of colon cancer following tissue-specific sodium iodide symporter gene transferGene Ther.12272-280. Scholz, I.V., Cengic, N., Baker, C.H., et al. (2005). Radioiodine therapy of colon cancer following tissue-specific sodium iodide symporter gene transfer. Gene Ther. 12, 272–280.
Spaeth E.Klopp A.Dembinski J. et al.2008. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cellsGene Ther.15730-738. Spaeth, E., Klopp, A., Dembinski, J., et al. (2008). Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 15, 730–738.
Spaeth E.L.Dembinski J.L.Sasser A.K. et al.2009. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progressionPLoS One4e4992. Spaeth, E.L., Dembinski, J.L., Sasser, A.K., et al. (2009). Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 4, e4992.
Spitzweg C.Zhang S.Bergert E.R. et al.1999. Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium iodide symporter in prostate cancer cell linesCancer Res.592136-2141. Spitzweg, C., Zhang, S., Bergert, E.R., et al. (1999). Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium iodide symporter in prostate cancer cell lines. Cancer Res. 59, 2136–2141.
Spitzweg C.O'Connor M.K.Bergert E.R. et al.2000. Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporterCancer Res606526-6530. Spitzweg, C., O'Connor, M.K., Bergert, E.R., et al. (2000). Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. Cancer Res 60, 6526–6530.
Spitzweg C.Dietz A.B.O'Connor M.K. et al.2001. In vivo sodium iodide symporter gene therapy of prostate cancerGene Ther.81524-1531. Spitzweg, C., Dietz, A.B., O'Connor, M.K., et al. (2001). In vivo sodium iodide symporter gene therapy of prostate cancer. Gene Ther. 8, 1524–1531.
Spitzweg C.Morris J.C.2002. The sodium iodide symporter: its pathophysiological and therapeutic implicationsClin. Endocrinol. (Oxf)57559-574. Spitzweg, C., and Morris, J.C. (2002). The sodium iodide symporter: its pathophysiological and therapeutic implications. Clin. Endocrinol. (Oxf) 57, 559–574.
Spitzweg C.Baker C.H.Bergert E.R. et al.2007. Image-guided radioiodide therapy of medullary thyroid cancer after carcinoembryonic antigen promoter-targeted sodium iodide symporter gene expressionHum. Gene Ther.18916-924. Spitzweg, C., Baker, C.H., Bergert, E.R., et al. (2007). Image-guided radioiodide therapy of medullary thyroid cancer after carcinoembryonic antigen promoter-targeted sodium iodide symporter gene expression. Hum. Gene Ther. 18, 916–924.
Van Sande J.Massart C.Beauwens R. et al.2003. Anion selectivity by the sodium iodide symporterEndocrinology144247-252. Van Sande, J., Massart, C., Beauwens, R., et al. (2003). Anion selectivity by the sodium iodide symporter. Endocrinology 144, 247–252.
Von Luttichau I.Notohamiprodjo M.Wechselberger A. et al.2005. Human adult CD34- progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but not CXCR4Stem Cells Dev.14329-336. Von Luttichau, I., Notohamiprodjo, M., Wechselberger, A., et al. (2005). Human adult CD34- progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but not CXCR4. Stem Cells Dev. 14, 329–336.
Wapnir I.L.Goris M.Yudd A. et al.2004. The Na+/I- symporter mediates iodide uptake in breast cancer metastases and can be selectively down-regulated in the thyroidClin Cancer Res.104294-4302. Wapnir, I.L., Goris, M., Yudd, A., et al. (2004). The Na+/I- symporter mediates iodide uptake in breast cancer metastases and can be selectively down-regulated in the thyroid. Clin Cancer Res. 10, 4294–4302.
Willhauck M.J.Sharif-Samani B.R.Gildehaus F.J. et al.2007. Application of 188Re as an Alternative Radionuclide for Treatment of Prostate Cancer after Tumor-Specific Sodium Iodide Symporter Gene ExpressionJ. Clin. Endocrinol Metab.924451-4458. Willhauck, M.J., Sharif-Samani, B.R., Gildehaus, F.J., et al. (2007). Application of 188Re as an Alternative Radionuclide for Treatment of Prostate Cancer after Tumor-Specific Sodium Iodide Symporter Gene Expression. J. Clin. Endocrinol Metab. 92, 4451–4458.
Willhauck M.J.Samani B.R.Wolf I. et al.2008a. The potential of 211Astatine for NIS-mediated radionuclide therapy in prostate cancerEur. J. Nucl. Med. Mol. Imaging351272-1281. Willhauck, M.J., Samani, B.R., Wolf, I., et al. (2008a). The potential of 211Astatine for NIS-mediated radionuclide therapy in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 35, 1272–1281.
Willhauck M.J.Sharif-Samani B.Senekowitsch-Schmidtke R. et al.2008b. Functional sodium iodide symporter expression in breast cancer xenografts in vivo after systemic treatment with retinoic acid and dexamethasoneBreast Cancer Res. Treat.109263-272. Willhauck, M.J., Sharif-Samani, B., Senekowitsch-Schmidtke, R., et al. (2008b). Functional sodium iodide symporter expression in breast cancer xenografts in vivo after systemic treatment with retinoic acid and dexamethasone. Breast Cancer Res. Treat. 109, 263–272.
Willhauck M.J.Sharif Samani B.R.Klutz K. et al.2008c. Alpha-fetoprotein promoter-targeted sodium iodide symporter gene therapy of hepatocellular carcinomaGene Ther.15214-223. Willhauck, M.J., Sharif Samani, B.R., Klutz, K., et al. (2008c). Alpha-fetoprotein promoter-targeted sodium iodide symporter gene therapy of hepatocellular carcinoma. Gene Ther. 15, 214–223.
Zischek C.Niess H.Ischenko I. et al.2009. Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinomaAnn. Surg.250747-753. Zischek, C., Niess, H., Ischenko, I., et al. (2009). Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann. Surg. 250, 747–753.
Zlotnik A.Yoshie O.2000. Chemokines: a new classification system and their role in immunityImmunity12121-127. Zlotnik, A., and Yoshie, O. (2000). Chemokines: a new classification system and their role in immunity. Immunity 12, 121–127.

Information & Authors

Information

Published In

cover image Human Gene Therapy
Human Gene Therapy
Volume 24Issue Number 3March 2013
Pages: 306 - 316
PubMed: 23402366

History

Published in print: March 2013
Published online: 12 February 2013
Accepted: 11 February 2013
Received: 24 May 2012

Permissions

Request permissions for this article.

Authors

Affiliations

Kerstin Knoop
Department of Internal Medicine II, Ludwig-Maximilians-University, Munich 81377, Germany.
Nathalie Schwenk
Department of Internal Medicine II, Ludwig-Maximilians-University, Munich 81377, Germany.
Patrick Dolp
Department of Internal Medicine II, Ludwig-Maximilians-University, Munich 81377, Germany.
Michael J. Willhauck
Department of Internal Medicine II, Ludwig-Maximilians-University, Munich 81377, Germany.
Christoph Zischek
Clinical Biochemistry Group, Department of Medical Policlinic IV, Ludwig-Maximilians-University, Munich 81377, Germany.
Christian Zach
Department of Nuclear Medicine, Department of Pharmacy, Center of Drug Research, Ludwig-Maximilians-University, Munich 81377, Germany.
Markus Hacker
Department of Nuclear Medicine, Department of Pharmacy, Center of Drug Research, Ludwig-Maximilians-University, Munich 81377, Germany.
Burkhard Göke
Department of Internal Medicine II, Ludwig-Maximilians-University, Munich 81377, Germany.
Ernst Wagner
Pharmaceutical Biotechnology, Ludwig-Maximilians-University, Munich 81377, Germany.
Peter J. Nelson
Clinical Biochemistry Group, Department of Medical Policlinic IV, Ludwig-Maximilians-University, Munich 81377, Germany.
Christine Spitzweg
Department of Internal Medicine II, Ludwig-Maximilians-University, Munich 81377, Germany.

Notes

Address correspondence to:Dr. Christine SpitzwegDepartment of Internal Medicine IIUniversity Hospital of MunichMarchioninistrasse 1581377 MunichGermany
E-mail: [email protected]

Author Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top