Review Article
No access
Published Online: 17 December 2012

Bioactivity and Biomodification of Ag, ZnO, and CuO Nanoparticles with Relevance to Plant Performance in Agriculture

Publication: Industrial Biotechnology
Volume 8, Issue Number 6

Abstract

In late 1996, the Nanotechnology Working Group was established in the US, comprised of members of various government agencies, academia, and industry to focus on advancing nanotechnology. It is estimated that the worldwide market for products with nanotechnology components will reach $1 trillion by 2015.1 Nanoparticles (NPs), which are found in a variety of household, industrial, and medical products, have both benefits and risks related to their small size, which confers enhanced and often unique attributes compared to large-sized particles of similar chemistry. This review focuses on environmental factors that modify the biological activity, transformation, and potential relevance of silver (Ag), copper oxide (CuO), and zinc oxide (ZnO) NPs to help evaluate their risk to agriculture. We chose to study these particular NPs because they possess antimicrobial properties toward certain human pathogens, including those resistant to traditional antibiotics. However, in soil, plant growth and biogeochemical cycles rely on microbial activity that may be susceptible to intentionally or inadvertently introduced NPs. Biological activity of metal and metal oxide NPs toward microbes and plants is observed, although aggregation of the NPs occurs. The NPs act as primary sources of soluble metal so that exposed microbes and plants are faced with both particle-specific and ion-related toxicities. Bioactivity is mitigated by factors present on microbial cell surfaces, components exuded by plant roots, and materials present in soil pore water. At sub-lethal levels, the NPs change bacterial and plant metabolism to make risk prediction complex. Serendipitously, this aspect of NP interaction with bacterial cells or plants could be utilized in the production of commercially valuable metabolites. The potential for NPs to benefit plant productivity by enhancing nutrient availability and improving plant health is discussed herein. The utilization of plant and microbial metabolism for green synthesis of NPs or in remediation of NP-contaminated soils is also addressed. Maximizing these potentials demands a deeper understanding of the complex interactions and interplay between NPs, plants, and microbes relevant to the variability of different ecosystems.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Roco MC. Environmentally responsible development of nanotechnologyEnviron Sci Technol200539106-112. 1. Roco MC. Environmentally responsible development of nanotechnology. Environ Sci Technol 2005;39:106–112.
2.
Nohynek GJLademann JRibaud CRoberts MS. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safetyCrit Rev Toxicol200737251-277. 2. Nohynek GJ, Lademann J, Ribaud C, Roberts MS. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 2007;37:251–277.
3.
Brayner R. The toxicological impacts of nanoparticlesNano Today2008348-54. 3. Brayner R. The toxicological impacts of nanoparticles. Nano Today 2008;3:48–54.
4.
Ren GHu DCheng EWC et al. Characterisation of copper oxide nanoparticles for antimicrobial applicationsInt J Antimicrob Ag200933587-590. 4. Ren G, Hu D, Cheng EWC, et al. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Ag 2009;33:587–590.
5.
Xie YHe YIrwin PL et al. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuniAppl Environ Microb2011772325-2331. 5. Xie Y, He Y, Irwin PL, et al. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microb 2011;77:2325–2331.
6.
Colvin VL. The potential environmental impact of engineered nanoparticlesNat Biotechnol2003211166-1170. 6. Colvin VL. The potential environmental impact of engineered nanoparticles. Nat Biotechnol 2003;21:1166–1170.
7.
The Royal Society. Nanoscience and Nanotechnologies: Opportunities and Uncertainties2004www.nanotec.org.uk/finalReport.htmNovember2012. 7. The Royal Society. Nanoscience and Nanotechnologies: Opportunities and Uncertainties (2004) Available at: www.nanotec.org.uk/finalReport.htm (Last accessed November 2012).
8.
Nel AXia TMädler LLi N. Toxic potential of materials at the nanoscale levelScience2006311622-627. 8. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanoscale level. Science 2006;311:622–627.
9.
Gogos AKnauer KBucheli TD. Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research prioritiesJ Agr Food Chem2012609781-9792. 9. Gogos A, Knauer K, Bucheli TD. Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. J Agr Food Chem 2012;60:9781–9792.
10.
Khot LRSankaran SMaja JM et al. Applications of nanomaterials in agricultural production and crop protection: A reviewCrop Prot20123564-70. 10. Khot LR, Sankaran S, Maja JM, et al. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot 2012;35:64–70.
11.
Pérez-de-Luque ARubiales D. Nanotechnology for parasitic plant controlPest Manag Sci200965540-545. 11. Pérez-de-Luque A, Rubiales D. Nanotechnology for parasitic plant control. Pest Manag Sci 2009;65:540–545.
12.
El Badawy AMLuxton TPSilva RG et al. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensionsEnvir Sci Tech2010441260-1266. 12. El Badawy AM, Luxton TP, Silva RG, et al. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Envir Sci Tech 2010;44:1260–1266.
13.
Prathna TCChandrasekaran NMukherjee A. Studies on aggregation behaviour of silver nanoparticles in aqueous matrices: Effect of surface functionalization and matrix compositionColloid Surface A2011390216-224. 13. Prathna TC, Chandrasekaran N, Mukherjee A. Studies on aggregation behaviour of silver nanoparticles in aqueous matrices: Effect of surface functionalization and matrix composition. Colloid Surface A 2011;390:216–224.
14.
Jiang JOberdorster GBiswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studiesJ Nanopart Res20091177-89. 14. Jiang J, Oberdorster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 2009;11:77–89.
15.
Auffan MRose JWiesner MRBottero J-Y. Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitroEnviron Pollut20091571127-1133. 15. Auffan M, Rose J, Wiesner MR, Bottero J-Y. Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro. Environ Pollut 2009;157:1127–1133.
16.
Dimkpa COMcLean JEBritt DWAnderson AJ. CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer, Pseudomonas chlororaphis O6Nanotoxicology20126635-642. 16. Dimkpa CO, McLean JE, Britt DW, Anderson AJ. CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer, Pseudomonas chlororaphis O6. Nanotoxicology 2012;6:635–642.
17.
Liu XChen GSu C. Effects of material properties on sedimentation and aggregation of titanium dioxide nanoparticles of anatase and rutile in the aqueous phaseJ Colloid Interf Sci201136384-91. 17. Liu X, Chen G, Su C. Effects of material properties on sedimentation and aggregation of titanium dioxide nanoparticles of anatase and rutile in the aqueous phase. J Colloid Interf Sci 2011;363:84–91.
18.
Calder AJDimkpa COMcLean JE et al. Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6Sci Total Environ2012429215-222. 18. Calder AJ, Dimkpa CO, McLean JE, et al. Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6. Sci Total Environ 2012;429:215–222.
19.
Fabrega JFawcett SRRenshaw JCLead JR. Silver nanoparticle impact on bacterial growth: Effect of pH, concentration, and organic matterEnvir Sci Tech2009437285-7290. 19. Fabrega J, Fawcett SR, Renshaw JC, Lead JR. Silver nanoparticle impact on bacterial growth: Effect of pH, concentration, and organic matter. Envir Sci Tech 2009;43:7285–7290.
20.
Haichar FZMarol CBerge O et al. Plant host habitat and root exudates shape soil bacterial community structureISME J200821221-1230. 20. Haichar FZ, Marol C, Berge O, et al. Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2008;2:1221–1230.
21.
Jin CWHe YFTang CX et al. Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.)Plant Cell Environ200629888-897. 21. Jin CW, He YF, Tang CX, et al. Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.). Plant Cell Environ 2006;29:888–897.
22.
Yang CHCrowley DE. Rhizosphere microbial community structure in relation to root location and plant iron nutritional statusAppl Environ Microb200066345-351. 22. Yang CH, Crowley DE. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microb 2000;66:345–351.
23.
Dimkpa COCalder AMcLean JE et al. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ionsEnviron Pollut20111591749-1756. 23. Dimkpa CO, Calder A, McLean JE, et al. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environ Pollut 2011;159:1749–1756.
24.
Dimkpa COCalder CGajjar P et al. Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphisJ Hazard Mater2011188428-435. 24. Dimkpa CO, Calder C, Gajjar P, et al. Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. J Hazard Mater 2011;188:428–435.
25.
Dimkpa COZeng JMcLean JE et al. Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium, Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticlesAppl Environ Microb2012781404-1410. 25. Dimkpa CO, Zeng J, McLean JE, et al. Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium, Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl Environ Microb 2012;78:1404–1410.
26.
Dimkpa COMcLean JELatta DE et al. CuO and ZnO nanoparticles: Phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheatJ Nanopart Res2012141125. 26. Dimkpa CO, McLean JE, Latta DE, et al. CuO and ZnO nanoparticles: Phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat. J Nanopart Res 2012;14:1125.
27.
Child RMiller CDLiang Y et al. Polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates: Their association with plant rootsAppl Microbiol Biot200775655-663. 27. Child R, Miller CD, Liang Y, et al. Polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates: Their association with plant roots. Appl Microbiol Biot 2007;75:655–663.
28.
Dimkpa COMcLean JEBritt DW et al. Nano-specific inhibition of pyoverdine siderophore production in Pseudomonas chlororaphis O6 by CuO nanoparticlesChem Res Toxicol2012251066-1074. 28. Dimkpa CO, McLean JE, Britt DW, et al. Nano-specific inhibition of pyoverdine siderophore production in Pseudomonas chlororaphis O6 by CuO nanoparticles. Chem Res Toxicol 2012;25:1066–1074.
29.
Parker DRNorvell WAChaney RL. GEOCHEM-PC—A chemical speciation program for IBM and compatible personal computersLoeppert RHSchwab APGoldberg SChemical Equilibrium and Reaction ModelsMadison, WISoil Science Society of America2005253-270. 29. Parker DR, Norvell WA, Chaney RL. GEOCHEM-PC—A chemical speciation program for IBM and compatible personal computers. In: Loeppert RH, Schwab AP, Goldberg S, eds. Chemical Equilibrium and Reaction Models. Madison, WI: Soil Science Society of America, 2005:253–270.
30.
Wang HWick RLXing B. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegansEnviron Pollut20091571171-1177. 30. Wang H, Wick RL, Xing B. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 2009;157:1171–1177.
31.
Jackson AOTaylor CB. Plant-microbe interactions: Life and death at the interfacePlant Cell199681651-1668. 31. Jackson AO, Taylor CB. Plant-microbe interactions: Life and death at the interface. Plant Cell 1996;8:1651–1668.
32.
Berg G. Plant–microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agricultureAppl Microbiol Biot20098411-18. 32. Berg G. Plant–microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biot 2009;84:11–18.
33.
Spencer MRyu CMYang K-Y et al. Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathwayMol Plant Microbe In20036327-34. 33. Spencer M, Ryu CM, Yang K-Y, et al. Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway. Mol Plant Microbe In 2003;63:27–34.
34.
Cho SMKang BRHan SH et al. 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thalianaMol Plant Microbe In200881067-1077. 34. Cho SM, Kang BR, Han SH, et al. 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe In 2008;8:1067–1077.
35.
Ryu CMKang BRHan SH et al. Tobacco cultivars vary in induction of systemic resistance against cucumber mosaic virus and growth promotion by Pseudomonas chlororaphis O6 and its gacS mutantEur J Plant Pathol2007119383-390. 35. Ryu CM, Kang BR, Han SH, et al. Tobacco cultivars vary in induction of systemic resistance against cucumber mosaic virus and growth promotion by Pseudomonas chlororaphis O6 and its gacS mutant. Eur J Plant Pathol 2007;119:383–390.
36.
Nelson KEWeinel CPaulsen IT et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440Environ Microbiol20024799-808. 36. Nelson KE, Weinel C, Paulsen IT, et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 2002;4:799–808.
37.
Gajjar PPettee BBritt DW et al. Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440J Biol Eng200939. 37. Gajjar P, Pettee B, Britt DW, et al. Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 2009;3:9.
38.
Lok CNHo CMChen R et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticlesJ Proteome Res20065916-924. 38. Lok CN, Ho CM, Chen R, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 2006;5:916–924.
39.
McQuillan JSGroenaga IHStokes EShaw AM. Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12Nanotoxicology20126857. 39. McQuillan JS, Groenaga IH, Stokes E, Shaw AM. Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology 2012;6:857.
40.
Xiu ZMZhang QBPuppala HL et al. Negligible particle-specific antibacterial activity of silver nanoparticlesNano Lett2012124271-4275. 40. Xiu ZM, Zhang QB, Puppala HL, et al. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 2012;12:4271–4275.
41.
Kahru ADubourguier H-CBlinova I et al. Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: A mini reviewSensors200885153-5170. 41. Kahru A, Dubourguier H-C, Blinova I, et al. Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: A mini review. Sensors 2008; 8:5153–5170.
42.
Lewinson OLee ATRees DC. A P-type ATPase importer that discriminates between essential and toxic transition metalsProc Natl Acad Sci20091064677-4682. 42. Lewinson O, Lee AT, Rees DC. A P-type ATPase importer that discriminates between essential and toxic transition metals. Proc Natl Acad Sci 2009;106:4677–4682.
43.
Li QMahendra SLyon DY et al. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implicationsWater Res2008424591-4602. 43. Li Q, Mahendra S, Lyon DY, et al. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res 2008;42:4591–4602.
44.
Padmavathy NVijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial studySci Technol Adv Mat20089035004. 44. Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mat 2008;9:035004.
45.
Loper JEHassan KAMavrodi DV et al. Comparative genomics of plant-associated pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactionsPLoS Genet20128e1002784. 45. Loper JE, Hassan KA, Mavrodi DV, et al. Comparative genomics of plant-associated pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 2012;8:e1002784.
46.
Miller CDPettee BZhang C et al. Copper and cadmium: Responses in Pseudomonas putida KT2440Lett Appl Microbiol200949775-783. 46. Miller CD, Pettee B, Zhang C, et al. Copper and cadmium: Responses in Pseudomonas putida KT2440. Lett Appl Microbiol 2009;49:775–783.
47.
Beyeler MKeel CMichaux PHaas D. Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rotFEMS Microbiol Ecol199928225-233. 47. Beyeler M, Keel C, Michaux P, Haas D. Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot. FEMS Microbiol Ecol 1999;28:225–233.
48.
Patten CLGlick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root systemAppl Environ Microb2002683795-3801. 48. Patten CL, Glick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microb 2002;68:3795–3801.
49.
Dimkpa CMerten DSvatoš A et al. Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stressCan J Microbiol200854163-172. 49. Dimkpa C, Merten D, Svatoš A, et al. Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 2008;54:163–172.
50.
Dimkpa COSvatoš ADabrowska P et al. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces sppChemosphere20087419-25. 50. Dimkpa CO, Svatoš A, Dabrowska P, et al. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 2008;74:19–25.
51.
Dimkpa COMerten DSvatoš A et al. Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectivelyJ Applied Microbiol20091071687-1696. 51. Dimkpa CO, Merten D, Svatoš A, et al. Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Applied Microbiol 2009;107:1687–1696.
52.
Kloepper JWLeong JTeintze MSchroth MN. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteriaNature1980286885-886. 52. Kloepper JW, Leong J, Teintze M, Schroth MN. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 1980;286:885–886.
53.
Lodewyckx CVangronsveld JPorteous F et al. Endophytic bacteria and their potential applicationsCrit Rev Plant Sci200221583-606. 53. Lodewyckx C, Vangronsveld J, Porteous F, et al. Endophytic bacteria and their potential applications Crit Rev Plant Sci 2002;21:583–606.
54.
Vansuyt GRobin ABriat J-F et al. Iron acquisition from Fe-pyoverdine by Arabidopsis thalianaMol Plant Microbe Interact200720441-447. 54. Vansuyt G, Robin A, Briat J-F, et al. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact 2007;20:441–447.
55.
Dimkpa COMerten DSvatoš A et al. Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophoresSoil Biol Biochem200941154-162. 55. Dimkpa CO, Merten D, Svatoš A, et al. Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 2009;41:154–162.
56.
Glick BR. Using soil bacteria to facilitate phytoremediationBiotechnol Adv201028367-374. 56. Glick BR. Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 2010;28: 367–374.
57.
Rajkumar MSandhya SPrasad MNVFreitas H. Perspectives of plant-associated microbes in heavy metal phytoremediationBiotechnol Adv20123061562-1574. 57. Rajkumar M, Sandhya S, Prasad MNV, Freitas H. Perspectives of plant-associated microbes in heavy metal phytoremediation Biotechnol Adv 2012;30(6):1562–1574.
58.
De Vleesschauwer DDjavaheri MBakker PAHöfte M. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense responsePlant Physiol20081481996-2012. 58. De Vleesschauwer D, Djavaheri M, Bakker PA, Höfte M. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol 2008;148:1996–2012.
59.
Kang BRHan SHZdor RE et al. Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, GacSJ Microbiol Biotechnol200717586-593. 59. Kang BR, Han SH, Zdor RE, et al. Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, GacS. J Microbiol Biotechnol 2007;17:586–593.
60.
Wang YKern SENewman DK. Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transferJ Bacteriol2010192365-369. 60. Wang Y, Kern SE, Newman DK. Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. J Bacteriol 2010;192:365–369.
61.
Mandal GBhattacharya SGanguly T. Nature of interactions of tryptophan with zinc oxide nanoparticles and L-aspartic acid: A spectroscopic approachChem Phys Lett2009472128-133. 61. Mandal G, Bhattacharya S, Ganguly T. Nature of interactions of tryptophan with zinc oxide nanoparticles and L-aspartic acid: A spectroscopic approach. Chem Phys Lett 2009;472:128–133.
62.
Joshi PShewale VPandey R et al. Site-specific interaction between ZnO nanoparticles and tryptophan: A first principles quantum mechanical studyPhys Chem Chem Phys201113476-479. 62. Joshi P, Shewale V, Pandey R, et al. Site-specific interaction between ZnO nanoparticles and tryptophan: A first principles quantum mechanical study. Phys Chem Chem Phys 2011;13:476–479.
63.
Fang TWatson J-LJordan Goodman J et al. Does doping with aluminum alter the effects of ZnO nanoparticles on the metabolism of soil pseudomonads?Microbiol Res2012 63. Fang T, Watson J-L, Jordan Goodman J, et al. Does doping with aluminum alter the effects of ZnO nanoparticles on the metabolism of soil pseudomonads? Microbiol Res 2012; doi:10.1016j.micres.2012.09.001
64.
Li QAMavrodi DVThomashow LS et al. Ligand binding induces an ammonia channel in 2-amino-2-desoxyisochorismate (ADIC) synthase PhzEJ Biol Chem201128618213-18221. 64. Li QA, Mavrodi DV, Thomashow LS, et al. Ligand binding induces an ammonia channel in 2-amino-2-desoxyisochorismate (ADIC) synthase PhzE. J Biol Chem 2011;286:18213–18221.
65.
Jeong EChae SRKang STShin HS. Effects of silver nanoparticles on biological nitrogen removal processesWater Sci Technol201261298-1303. 65. Jeong E, Chae SR, Kang ST, Shin HS. Effects of silver nanoparticles on biological nitrogen removal processes. Water Sci Technol 2012;6:1298–1303.
66.
Liang ZDas AHu Z. Bacterial response to a shock load of nanosilver in an activated sludge treatment systemWater Res2010445432-5438. 66. Liang Z, Das A, Hu Z. Bacterial response to a shock load of nanosilver in an activated sludge treatment system. Water Res 2010;44:5432–5438.
67.
Radniecki TSStankus DPNeigh A et al. Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaeaChemosphere20118543-49. 67. Radniecki TS, Stankus DP, Neigh A, et al. Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea. Chemosphere 2011;85:43–49.
68.
Barrena RCasals EColon J et al. Evaluation of the ecotoxicity of model nanoparticlesChemosphere200975850-857. 68. Barrena R, Casals E, Colon J, et al. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 2009;75:850–857.
69.
Kumari MMukherjee AChandrasekaran N. Genotoxicity of silver nanoparticles in Allium cepaSci Total Environ20094075243-5246. 69. Kumari M, Mukherjee A, Chandrasekaran N. Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 2009;407:5243–5246.
70.
Lee W-MiKwak Jin IAn YJ. Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicityChemosphere201286491-499. 70. Lee, W-Mi, Kwak Jin I, An YJ. Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity. Chemosphere 2012;86:491–499.
71.
Stampoulis DSinha SKWhite JC. Assay-dependent phytotoxicity of nanoparticles to plantsEnviron Sci Technol2009439473-9479. 71. Stampoulis D, Sinha SK, White JC. Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 2009;43:9473–9479.
72.
Mazumdar HAhmed GU. Phytotoxicity effect of silver nanoparticles on Oryza sativaInter J ChemTech Res201131494-1500. 72. Mazumdar H, Ahmed GU. Phytotoxicity effect of silver nanoparticles on Oryza sativa. Inter J ChemTech Res 2011;3:1494–1500.
73.
Panda KKAcharya VMMKrishnaveni R et al. In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plantsToxicol in Vitro2011251097-1105. 73. Panda KK, Acharya VMM, Krishnaveni R, et al. In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol in Vitro 2011;25:1097–1105.
74.
Yin LCheng YEspinasse B et al. More than the ions: The effects of silver nanoparticles on Lolium multiflorumEnviron Sci Technol2011452360-2367. 74. Yin L, Cheng, Y, Espinasse B, et al. More than the ions: The effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 2011;45:2360–2367.
75.
Atha DHWang HPetersen EJ et al. Copper oxide nanoparticle mediated DNA damage in terrestrial plant modelsEnviron Sci Technol2012461819-1827. 75. Atha DH, Wang H, Petersen EJ, et al. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 2012; 46:1819–1827.
76.
Du WSun YJi R et al. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soilJ Environ Monitor201113822-828. 76. Du W, Sun Y, Ji R, et al. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monitor 2011;13:822–828.
77.
Kim SKim JLee I. Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativusChem Ecol20112749-55. 77. Kim S, Kim J, Lee I. Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chem Ecol 2011;27:49–55.
78.
Kim SLee SLee I. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativusWater Air Soil Poll20122232799-2806. 78. Kim S, Lee S, Lee I. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Poll 2012;223:2799–2806.
79.
Lin DHXing BS. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growthEnviron Pollut2007150243-250. 79. Lin DH, Xing BS. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut 2007;150:243–250.
80.
Lin DHXing BS. Root uptake and phytotoxicity of ZnO nanoparticlesEnviron Sci Technol2008425580-5585. 80. Lin DH, Xing BS. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 2008;42:5580–5585.
81.
Ma YHKuang LLHe X et al. Effects of rare earth oxide nanoparticles on root elongation of plantsChemosphere201078273-279. 81. Ma YH, Kuang LL, He X, et al. Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 2010;78:273–279.
82.
Asli SNeumann PM. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transportPlant Cell Environ200932577-584. 82. Asli S, Neumann PM. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 2009;32:577–584.
83.
Wang ZXie XZhao J et al. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.)Environ Sci Technol2012464434-4441. 83. Wang Z, Xie X, Zhao J, et al. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 2012;46:4434–4441.
84.
Yang LWatts DJ. Particle surface characteristics may play an important role in the phytotoxicity of alumina nanoparticlesToxicol Lett200558122-132. 84. Yang L, Watts DJ. Particle surface characteristics may play an important role in the phytotoxicity of alumina nanoparticles. Toxicol Lett 2005;58:122–132.
85.
Zhang PMa YHZhang ZY et al. Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus)Environ Sci Technol2012461834-1841. 85. Zhang P, Ma YH, Zhang, ZY, et al. Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 2012;46:1834–1841.
86.
Lin DTian XWu FXing B. Fate and transport of engineered nanomaterials in the environmentJ Environ Qual2010391896-1908. 86. Lin D, Tian X, Wu, F, Xing B. Fate and transport of engineered nanomaterials in the environment. J Environ Qual 2010;39:1896–1908.
87.
Hernandez-Viezcas JACastillo-Michel HServin AD et al. Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticlesChem Eng J2011170346-352. 87. Hernandez-Viezcas JA, Castillo-Michel H, Servin AD, et al. Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chem Eng J 2011;170:346–352.
88.
Gratao PLPolle ALea PJAzevedo RA. Making the life of heavy metal-stressed plants a little easierFunct Plant Biol200532481-494. 88. Gratao PL, Polle A, Lea PJ, Azevedo RA. Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 2005;32:481–494.
89.
Potters GPasternak TPGuisez Y et al. Stress-induced morphogenic responses: growing out of trouble?Trends Plant Sci20071298-105. 89. Potters G, Pasternak TP, Guisez Y, et al. Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 2007;12:98–105.
90.
Zhang ZYHe XZhang HF et al. Uptake and distribution of ceria nanoparticles in cucumber plantsMetallomics20113816-822. 90. Zhang ZY, He X, Zhang HF, et al. Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 2011;3:816–822.
91.
Zhu HHan JXiao JQJin Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plantsJ Environ Monitor200810713-717. 91. Zhu H, Han J, Xiao JQ, Jin Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monitor 2008;10:713–717.
92.
Rigo ACorazza Adi Paolo ML et al. Interaction of copper with cysteine: Stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidationJ Inorg Biochem2004981495-1501. 92. Rigo A, Corazza A, di Paolo ML, et al. Interaction of copper with cysteine: Stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidation. J Inorg Biochem 2004;98:1495–1501.
93.
Schmidt ACLauckner SLindner K. CZE of sulfur-containing amino acids and peptides and its application to the quantitative study of heavy metal-caused thiol oxidationsChromatographia201275661-670. 93. Schmidt AC, Lauckner S, Lindner K. CZE of sulfur-containing amino acids and peptides and its application to the quantitative study of heavy metal-caused thiol oxidations. Chromatographia 2012;75:661–670.
94.
Sarret GLaprade PSBert V et al. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleriPlant Physiol20021301815-1826. 94. Sarret G, Laprade PS, Bert V, et al. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 2002;130:1815–1826.
95.
Kumari MKhan SSPakrashi S et al. Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepaJ Hazard Mater2011190613-621. 95. Kumari M, Khan SS, Pakrashi S, et al. Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 2011;190:613–621.
96.
Zhao LPeralta-Videa JRRen M et al. Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: Electron microprobe and confocal microscopy studiesChem Eng J20121841-8. 96. Zhao L, Peralta-Videa JR, Ren M, et al. Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: Electron microprobe and confocal microscopy studies. Chem Eng J 2012;184:1–8.
97.
López-Moreno MLde la Rosa GHernández-Viezcas JA et al. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plantsEnviron Sci Technol2010447315-7320. 97. López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, et al. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 2010; 44:7315–7320.
98.
Kopittke PMMenzies NWde Jonge MD et al. In situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of cowpeaPlant Physiol2011156663-673. 98. Kopittke PM, Menzies NW, de Jonge MD, et al. In situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of cowpea. Plant Physiol 2011;156:663–673.
99.
Saraswat SRai JPN. Complexation and detoxification of Zn and Cd in metal accumulating plantsRev Environ Sci Biotechnol201110327-339. 99. Saraswat S, Rai JPN. Complexation and detoxification of Zn and Cd in metal accumulating plants. Rev Environ Sci Biotechnol 2011;10:327–339.
100.
Priester JHGe YMielke RE et al. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruptionProc Natl Acad Sci.20121092451-2456. 100. Priester JH, Ge Y, Mielke RE, et al. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci. 2012;109:2451–2456.
101.
Pandey ACSanjay SSYadav RS. Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinumJ Exp Nanosci20105488-497. 101. Pandey AC, Sanjay SS, Yadav RS. Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exp Nanosci 2010;5:488–497.
102.
Wang HKou XPei Z et al. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plantsNanotoxicology2011530-42. 102. Wang H, Kou X, Pei Z, et al. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 2011;5:30–42.
103.
Zheng LHong FLu SLiu C. Effects of nano-TiO2 on strength of naturally aged seeds and growth of spinachBiol Trace Elem Res200510483-91. 103. Zheng L, Hong F, Lu S, Liu C. Effects of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 2005;104:83–91.
104.
Gao FQHong FHLiu C et al. Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach-inducing complex of rubisco-rubisco activaseBiol Trace Elem Res2006111239-253. 104. Gao FQ, Hong FH, Liu C, et al. Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach-inducing complex of rubisco-rubisco activase. Biol Trace Elem Res 2006;111:239–253.
105.
Gao FLiu CQu C et al. Was improvement of spinach growth by nano-TiO2 treatment related to the changes of rubisco activase?Biometals200821211-217. 105. Gao F, Liu C, Qu C, et al. Was improvement of spinach growth by nano-TiO2 treatment related to the changes of rubisco activase? Biometals 2008;21:211–217.
106.
Hu XKCook SWang PHwang HM. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticlesSci Total Environ20094073070-3072. 106. Hu XK, Cook S, Wang P, Hwang HM. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci Total Environ 2009;407:3070–3072.
107.
Dehner CABarton LMaurice PADubois JL. Size-dependent bioavailability of hematite (alpha-Fe2O3) nanoparticles to a common aerobic bacteriumEnviron Sci Technol201145977-983. 107. Dehner CA, Barton L, Maurice PA, Dubois JL. Size-dependent bioavailability of hematite (alpha-Fe2O3) nanoparticles to a common aerobic bacterium. Environ Sci Technol 2011;45:977–983.
108.
Barton LEQuicksall ANMaurice PA. Siderophore-mediated dissolution of hematite (alpha-Fe2O3): Effects of nanoparticle sizeGeomicrobiol J201229314-322. 108. Barton LE, Quicksall AN, Maurice, PA. Siderophore-mediated dissolution of hematite (alpha-Fe2O3): Effects of nanoparticle size. Geomicrobiol J 2012 29:314–322.
109.
Chen YJurkewitch EBar-Ness EHadar Y1994. Stability constants of pseudobactin complexes with transition metalsSoil Sci Soc Am J199458390-396. 109. Chen Y, Jurkewitch E, Bar-Ness E, Hadar Y. 1994. Stability constants of pseudobactin complexes with transition metals. Soil Sci Soc Am J 1994;58:390–396.
110.
Brandel JHumbert NElhabiri M et al. Pyochelin, a siderophore of Pseudomonas aeruginosa: Physicochemical characterization of the iron(III), copper(II) and zinc(II) complexesDalton T2012412820-2834. 110. Brandel J, Humbert N, Elhabiri M, et al. Pyochelin, a siderophore of Pseudomonas aeruginosa: Physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. Dalton T 2012;41:2820–2834.
111.
Del Olmo ACaramelo CSanJose C. Fluorescent complex of pyoverdin with aluminumJ Inorg Biochem200397384-387. 111. Del Olmo A, Caramelo C, SanJose C. Fluorescent complex of pyoverdin with aluminum. J Inorg Biochem 2003;97:384–387.
112.
Lamsal KKim S-WJung JH et al. Effects of silver nanoparticles against powdery mildews on cucumber and pumpkinMycobiol20113926-32. 112. Lamsal K, Kim S-W, Jung JH, et al. Effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiol 2011;39:26–32.
113.
He LLiu YMustapha ZLin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansumMicrobiol Res2012166-207215. 113. He L, Liu Y, Mustapha Z, Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 2012;166;207–215.
114.
Jayaseelan CAbdul Rahuman AKirthi AV et al. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungiSpectrochim ACTA A20129078-84. 114. Jayaseelan C, Abdul Rahuman A, Kirthi AV, et al. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim ACTA A 2012;90:78–84.
115.
Alloway BJ. Soil factors associated with zinc deficiency in crops and humansEnviron Geochem Health200931537-548. 115. Alloway BJ. Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 2009;31:537–548.
116.
White PJBroadley MR. Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodineNew Phytol200918249-84. 116. White PJ, Broadley MR. Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 2009;182:49–84.
117.
Milani NMcLaughlin MJStacey SP et al. Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticlesJ Agr Food Chem2012603991-3998. 117. Milani N, McLaughlin MJ, Stacey SP, et al. Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agr Food Chem 2012;60:3991–3998.
118.
Gardea-Torresdey JLGomez EPeralta-Videa JR et al. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticlesLangmuir2003191357-1361. 118. Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, et al. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir 2003;19:1357–1361.
119.
Beattie IRHaverkamp RG. Silver and gold nanoparticles in plants: Sites for the reduction to metalMetallomics20113628-632. 119. Beattie IR, Haverkamp RG. Silver and gold nanoparticles in plants: Sites for the reduction to metal. Metallomics 2011;3:628–632.
120.
Harris ATBali R. On the formation and extent of uptake of silver nanoparticles by live plantsJ Nanopart Res200810691-695. 120. Harris AT, Bali R. On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 2008;10:691–695.
121.
Haverkamp RGMarshall AT. The mechanism of metal nanoparticle formation in plants: Limits on accumulationJ Nanopart Res2009111453-1463. 121. Haverkamp RG, Marshall AT. The mechanism of metal nanoparticle formation in plants: Limits on accumulation. J Nanopart Res 2009;11:1453–1463.
122.
Kubis SELilley KSJarvis P. Isolation and preparation of chloroplasts from Arabidopsis thaliana plantsMethod Mol Biol2008425171-186. 122. Kubis SE, Lilley KS, Jarvis P. Isolation and preparation of chloroplasts from Arabidopsis thaliana plants. Method Mol Biol 2008;425:171–186.
123.
Robert SZouhar JCarter CRaikhel N. Isolation of intact vacuoles from Arabidopsis rosette leaf–derived protoplastsNature Protoc20072259-262. 123. Robert S, Zouhar J, Carter C, Raikhel N. Isolation of intact vacuoles from Arabidopsis rosette leaf–derived protoplasts. Nature Protoc 2007;2:259–262.
124.
Dhillon GSBrar SKKaur SVerma M. Green approach for nanoparticle biosynthesis by fungi: Current trends and applicationsCrit Rev Biotechnol20123249-73. 124. Dhillon GS, Brar SK, Kaur S, Verma M. Green approach for nanoparticle biosynthesis by fungi: Current trends and applications. Crit Rev Biotechnol 2012;32:49–73.
125.
Mandal DBolander MEMukhopadhyay D et al. The use of microorganisms for the formation of metal nanoparticles and their applicationAppl Microbiol Biot200669485-492. 125. Mandal D, Bolander ME, Mukhopadhyay D, et al. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biot 2006;69:485–492.
126.
Prasad TNVKVNaidu R. A critical review on biogenic silver nanoparticles and their antimicrobial activityCurr Nanosci20117531-544. 126. Prasad, TNVKV, Naidu R. A critical review on biogenic silver nanoparticles and their antimicrobial activity. Curr Nanosci 2011;7:531–544.
127.
Fayaz AMBalaji KGirilal M et al. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteriaNanomedicine20106103-109. 127. Fayaz AM, Balaji K, Girilal M, et al. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine 2010;6:103–109.
128.
Nanda ASaravanan M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSENanomedicine20095452-456. 128. Nanda A, Saravanan M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 2009;5:452–456.
129.
Ingle AGade APierrat S et al. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteriaCurr Nanosci20084141-144. 129. Ingle A, Gade A, Pierrat S, et al. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 2008;4:141–144.
130.
Lee J-HHan JChoi JHur H-G. Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by Shewanella spHN-41. Chemosphere2007681898-1905. 130. Lee J-H, Han J, Choi J, Hur H-G. Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by Shewanella sp. HN-41. Chemosphere 2007;68:1898–1905.
131.
Bao HLu ZCui X et al. Extracellular microbial synthesis of biocompatible CdTe quantum dotsActa Biomater201063534-3541. 131. Bao H, Lu Z, Cui X, et al. Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater 2010;6:3534–3541.
132.
Bai HJZhang ZMGuo Y et al. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria, Rhodopseudomonas palustrisColloid Surface B200970142-146. 132. Bai HJ, Zhang ZM, Guo Y, et al. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria, Rhodopseudomonas palustris. Colloid Surface B 2009;70:142–146.
133.
Pearce CICoker VSCharnock et al. Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica: An in situ EXAFS studyNanotechnol2008. 133. Pearce CI, Coker VS, Charnock et al. Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica: An in situ EXAFS study. Nanotechnol 2008;doi:10.1088/0957-4484/19/15/155603.

Information & Authors

Information

Published In

cover image Industrial Biotechnology
Industrial Biotechnology
Volume 8Issue Number 6December 2012
Pages: 344 - 357

History

Published online: 17 December 2012
Published in print: December 2012

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Christian O. Dimkpa
Department of Biology, Utah State University, Logan, UT
Joan E. McLean
Utah Water Research Laboratory, Utah State University, Logan, UT
David W. Britt
Department of Biological Engineering, Utah State University, Logan, UT
Anne J. Anderson
Department of Biology, Utah State University, Logan, UT

Notes

Address correspondence to:Anne J. Anderson, Ph.D.ProfessorDepartment of Biology, UMC 5305Utah State UniversityLogan, UT 84322-5305Phone: 435-797-3407Fax: 435-797-1575E-mail: [email protected]

Author Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top