ChLpMab-23: Cancer-Specific Human–Mouse Chimeric Anti-Podoplanin Antibody Exhibits Antitumor Activity via Antibody-Dependent Cellular Cytotoxicity
Publication: Monoclonal Antibodies in Immunodiagnosis and Immunotherapy
Volume 36, Issue Number 3
Abstract
Podoplanin is expressed in many cancers, including oral cancers and brain tumors. The interaction between podoplanin and its receptor C-type lectin-like receptor 2 (CLEC-2) has been reported to be involved in cancer metastasis and tumor malignancy. We previously established many monoclonal antibodies (mAbs) against human podoplanin using the cancer-specific mAb (CasMab) technology. LpMab-23 (IgG1, kappa), one of the mouse anti-podoplanin mAbs, was shown to be a CasMab. However, we have not shown the usefulness of LpMab-23 for antibody therapy against podoplanin-expressing cancers. In this study, we first determined the minimum epitope of LpMab-23 and revealed that Gly54–Leu64 peptide, especially Gly54, Thr55, Ser56, Glu57, Asp58, Arg59, Tyr60, and Leu64 of podoplanin, is a critical epitope of LpMab-23. We further produced human–mouse chimeric LpMab-23 (chLpMab-23) and investigated whether chLpMab-23 exerts antibody-dependent cellular cytotoxicity (ADCC) and antitumor activity. In flow cytometry, chLpMab-23 showed high sensitivity against a podoplanin-expressing glioblastoma cell line, LN319, and an oral cancer cell line, HSC-2. chLpMab-23 also showed ADCC activity against podoplanin-expressing CHO cells (CHO/podoplanin). In xenograft models with HSC-2 and CHO/podoplanin, chLpMab-23 exerts antitumor activity using human natural killer cells, indicating that chLpMab-23 could be useful for antibody therapy against podoplanin-expressing cancers.
Get full access to this article
View all available purchase options and get full access to this article.
References
1.
Martin-Villar E, Scholl FG, Gamallo C, Yurrita MM, Munoz-Guerra M, Cruces J, and Quintanilla M: Characterization of human PA2.26 antigen (T1alpha-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas. Int J Cancer 2005;113:899–910.
2.
Yuan P, Temam S, El-Naggar A, Zhou X, Liu D, Lee J, and Mao L: Overexpression of podoplanin in oral cancer and its association with poor clinical outcome. Cancer 2006;107:563–569.
3.
Kunita A, Kashima TG, Ohazama A, Grigoriadis AE, and Fukayama M: Podoplanin is regulated by AP-1 and promotes platelet aggregation and cell migration in osteosarcoma. Am J Pathol 2011;179:1041–1049.
4.
Kato Y, Kaneko MK, Kuno A, Uchiyama N, Amano K, Chiba Y, Hasegawa Y, Hirabayashi J, Narimatsu H, Mishima K, and Osawa M: Inhibition of tumor cell-induced platelet aggregation using a novel anti-podoplanin antibody reacting with its platelet-aggregation-stimulating domain. Biochem Biophys Res Commun 2006;349:1301–1307.
5.
Mishima K, Kato Y, Kaneko MK, Nakazawa Y, Kunita A, Fujita N, Tsuruo T, Nishikawa R, Hirose T, and Matsutani M: Podoplanin expression in primary central nervous system germ cell tumors: A useful histological marker for the diagnosis of germinoma. Acta Neuropathol (Berl) 2006;111:563–568.
6.
Mishima K, Kato Y, Kaneko MK, Nishikawa R, Hirose T, and Matsutani M: Increased expression of podoplanin in malignant astrocytic tumors as a novel molecular marker of malignant progression. Acta Neuropathol (Berl) 2006;111:483–488.
7.
Abe S, Morita Y, Kaneko MK, Hanibuchi M, Tsujimoto Y, Goto H, Kakiuchi S, Aono Y, Huang J, Sato S, Kishuku M, Taniguchi Y, Azuma M, Kawazoe K, Sekido Y, Yano S, Akiyama S, Sone S, Minakuchi K, Kato Y, and Nishioka Y: A novel targeting therapy of malignant mesothelioma using anti-podoplanin antibody. J Immunol 2013;190:6239–6249.
8.
Kato Y, Vaidyanathan G, Kaneko MK, Mishima K, Srivastava N, Chandramohan V, Pegram C, Keir ST, Kuan CT, Bigner DD, and Zalutsky MR: Evaluation of anti-podoplanin rat monoclonal antibody NZ-1 for targeting malignant gliomas. Nucl Med Biol 2010;37:785–794.
9.
Kato Y, Fujita N, Kunita A, Sato S, Kaneko M, Osawa M, and Tsuruo T: Molecular identification of Aggrus/T1alpha as a platelet aggregation-inducing factor expressed in colorectal tumors. J Biol Chem 2003;278:51599–51605.
10.
Kato Y, Sasagawa I, Kaneko M, Osawa M, Fujita N, and Tsuruo T: Aggrus: A diagnostic marker that distinguishes seminoma from embryonal carcinoma in testicular germ cell tumors. Oncogene 2004;23:8552–8556.
11.
Kato Y, Kaneko M, Sata M, Fujita N, Tsuruo T, and Osawa M: Enhanced expression of Aggrus (T1alpha/podoplanin), a platelet-aggregation-inducing factor in lung squamous cell carcinoma. Tumor Biol 2005;26:195–200.
12.
Kunita A, Kashima TG, Morishita Y, Fukayama M, Kato Y, Tsuruo T, and Fujita N: The platelet aggregation-inducing factor aggrus/podoplanin promotes pulmonary metastasis. Am J Pathol 2007;170:1337–1347.
13.
Kaneko MK, Kato Y, Kitano T, and Osawa M: Conservation of a platelet activating domain of Aggrus/podoplanin as a platelet aggregation-inducing factor. Gene 2006;378:52–57.
14.
Herzog BH, Fu J, Wilson SJ, Hess PR, Sen A, McDaniel JM, Pan Y, Sheng M, Yago T, Silasi-Mansat R, McGee S, May F, Nieswandt B, Morris AJ, Lupu F, Coughlin SR, McEver RP, Chen H, Kahn ML, and Xia L: Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature 2013;502:105–109.
15.
Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, Yamazaki Y, Narimatsu H, and Ozaki Y: Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 2007;282:25993–26001.
16.
Kato Y, Kaneko MK, Kunita A, Ito H, Kameyama A, Ogasawara S, Matsuura N, Hasegawa Y, Suzuki-Inoue K, Inoue O, Ozaki Y, and Narimatsu H: Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Sci 2008;99:54–61.
17.
Nagae M, Morita-Matsumoto K, Kato M, Kaneko MK, Kato Y, and Yamaguchi Y: A platform of C-type lectin-like receptor CLEC-2 for binding O-glycosylated podoplanin and nonglycosylated rhodocytin. Structure 2014;22:1711–1721.
18.
Suzuki-Inoue K, Fuller GL, Garcia A, Eble JA, Pohlmann S, Inoue O, Gartner TK, Hughan SC, Pearce AC, Laing GD, Theakston RD, Schweighoffer E, Zitzmann N, Morita T, Tybulewicz VL, Ozaki Y, and Watson SP: A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 2006;107:542–549.
19.
Ogasawara S, Kaneko MK, Price JE, and Kato Y: Characterization of anti-podoplanin monoclonal antibodies: Critical epitopes for neutralizing the interaction between podoplanin and CLEC-2. Hybridoma 2008;27:259–267.
20.
Chaipan C, Steffen I, Tsegaye TS, Bertram S, Glowacka I, Kato Y, Schmokel J, Munch J, Simmons G, Gerardy-Schahn R, and Pohlmann S: Incorporation of podoplanin into HIV released from HEK-293T cells, but not PBMC, is required for efficient binding to the attachment factor CLEC-2. Retrovirology 2010;7:47.
21.
Astarita JL, Cremasco V, Fu J, Darnell MC, Peck JR, Nieves-Bonilla JM, Song K, Kondo Y, Woodruff MC, Gogineni A, Onder L, Ludewig B, Weimer RM, Carroll MC, Mooney DJ, Xia L, and Turley SJ: The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nat Immunol 2015;16:75–84.
22.
Acton SE, Astarita JL, Malhotra D, Lukacs-Kornek V, Franz B, Hess PR, Jakus Z, Kuligowski M, Fletcher AL, Elpek KG, Bellemare-Pelletier A, Sceats L, Reynoso ED, Gonzalez SF, Graham DB, Chang J, Peters A, Woodruff M, Kim YA, Swat W, Morita T, Kuchroo V, Carroll MC, Kahn ML, Wucherpfennig KW, and Turley SJ: Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity 2012;37:276–289.
23.
Chen G, Xu R, Yue B, Mei X, Li P, Zhou X, Huang S, Gong L, and Zhang S: The expression of podoplanin protein is a diagnostic marker to distinguish the early Infiltration of esophageal squamous cell carcinoma. Oncotarget 2017;8:19013–19020.
24.
Atsumi N, Ishii G, Kojima M, Sanada M, Fujii S, and Ochiai A: Podoplanin, a novel marker of tumor-initiating cells in human squamous cell carcinoma A431. Biochem Biophys Res Commun 2008;373:36–41.
25.
Miyashita T, Higuchi Y, Kojima M, Ochiai A, and Ishii G: Single cell time-lapse analysis reveals that podoplanin enhances cell survival and colony formation capacity of squamous cell carcinoma cells. Sci Rep 2017;7:39971.
26.
Morikawa M, Derynck R, and Miyazono K: TGF-beta and the TGF-beta family: Context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol 2016 May 2;8: pii:.
27.
Suzuki H, Kato Y, Kaneko MK, Okita Y, Narimatsu H, and Kato M: Induction of podoplanin by transforming growth factor-beta in human fibrosarcoma. FEBS Lett 2008;582:341–345.
28.
Takemoto A, Okitaka M, Takagi S, Takami M, Sato S, Nishio M, Okumura S, and Fujita N: A critical role of platelet TGF-beta release in podoplanin-mediated tumour invasion and metastasis. Sci Rep 2017;7:42186.
29.
Kaneko MK, Oki H, Ogasawara S, Takagi M, and Kato Y: Anti-podoplanin monoclonal antibody LpMab-7 detects metastatic legions of osteosarcoma. Monoclon Antib Immunodiagn Immunother 2015;34:154–161.
30.
Oki H, Kaneko MK, Ogasawara S, Tsujimoto Y, Liu X, Sugawara M, Takakubo Y, Takagi M, and Kato Y: Characterization of a monoclonal antibody LpMab-7 recognizing non-PLAG domain of podoplanin. Monoclon Antib Immunodiagn Immunother 2015;34:174–180.
31.
Ogasawara S, Oki H, Kaneko MK, Hozumi Y, Liu X, Honma R, Fujii Y, Nakamura T, Goto K, Takagi M, and Kato Y: Development of monoclonal antibody LpMab-10 recognizing non-glycosylated PLAG1/2 domain including Thr34 of human podoplanin. Monoclon Antib Immunodiagn Immunother 2015;34:318–326.
32.
Kato Y, Ogasawara S, Oki H, Honma R, Takagi M, Fujii Y, Nakamura T, Saidoh N, Kanno H, Umetsu M, Kamata S, Kubo H, Yamada M, Sawa Y, Morita K, Harada H, Suzuki H, and Kaneko MK: Novel monoclonal antibody LpMab-17 developed by CasMab technology distinguishes human podoplanin from monkey podoplanin. Monoclon Antib Immunodiagn Immunother 2016;35:109–116.
33.
Sekiguchi T, Takemoto A, Takagi S, Takatori K, Sato S, Takami M, and Fujita N: Targeting a novel domain in podoplanin for inhibiting platelet-mediated tumor metastasis. Oncotarget 2016;7:3934–3946.
34.
Takagi S, Oh-hara T, Sato S, Gong B, Takami M, and Fujita N: Expression of Aggrus/podoplanin in bladder cancer and its role in pulmonary metastasis. Int J Cancer 2014;134:2605–2614.
35.
Takagi S, Sato S, Oh-hara T, Takami M, Koike S, Mishima Y, Hatake K, and Fujita N: Platelets promote tumor growth and metastasis via direct interaction between Aggrus/podoplanin and CLEC-2. PLoS One 2013;8:e73609.
36.
Kato Y, and Kaneko MK: A cancer-specific monoclonal antibody recognizes the aberrantly glycosylated podoplanin. Sci Rep 2014;4:5924.
37.
Kato Y, Ogasawara S, Oki H, Goichberg P, Honma R, Fujii Y, and Kaneko MK: LpMab-12 established by CasMab technology specifically detects sialylated O-glycan on Thr52 of platelet aggregation-stimulating domain of human podoplanin. PLoS One 2016;11:e0152912.
38.
Ogasawara S, Kaneko MK, and Kato Y: LpMab-19 recognizes sialylated O-glycan on Thr76 of human podoplanin. Monoclon Antib Immunodiagn Immunother 2016;35:245–253.
39.
Kaneko MK, Nakamura T, Honma R, Ogasawara S, Fujii Y, Abe S, Takagi M, Harada H, Suzuki H, Nishioka Y, and Kato Y: Development and characterization of anti-glycopeptide monoclonal antibodies against human podoplanin, using glycan-deficient cell lines generated by CRISPR/Cas9 and TALEN. Cancer Med 2017;6:382–396.
40.
Oki H, Ogasawara S, Kaneko MK, Takagi M, Yamauchi M, and Kato Y: Characterization of monoclonal antibody LpMab-3 recognizing sialylated glycopeptide of podoplanin. Monoclon Antib Immunodiagn Immunother 2015;34:44–50.
41.
Kaneko MK, Yamada S, Nakamura T, Abe S, Nishioka Y, Kunita A, Fukayama M, Fujii Y, Ogasawara S, and Kato Y: Antitumor activity of chLpMab-2, a human–mouse chimeric cancer-specific antihuman podoplanin antibody, via antibody-dependent cellular cytotoxicity. Cancer Med 2017;6:768–777.
42.
Yamada S, Kaneko MK, and Kato Y: LpMab-23: A cancer-specific monoclonal antibody against human podoplanin. Monoclon Antib Immunodiagn Immunother 2017;36:72–76.
43.
Hayatsu N, Ogasawara S, Kaneko MK, Kato Y, and Narimatsu H: Expression of highly sulfated keratan sulfate synthesized in human glioblastoma cells. Biochem Biophys Res Commun 2008;368:217–222.
44.
Abe S, Kaneko MK, Tsuchihashi Y, Izumi T, Ogasawara S, Okada N, Sato C, Tobiume M, Otsuka K, Miyamoto L, Tsuchiya K, Kawazoe K, Kato Y, and Nishioka Y: Antitumor effect of novel anti-podoplanin antibody NZ-12 against malignant pleural mesothelioma in an orthotopic xenograft model. Cancer Sci 2016;107:1198–1205.
45.
Kato Y, Kunita A, Abe S, Ogasawara S, Fujii Y, Oki H, Fukayama M, Nishioka Y, and Kaneko MK: The chimeric antibody chLpMab-7 targeting human podoplanin suppresses pulmonary metastasis via ADCC and CDC rather than via its neutralizing activity. Oncotarget 2015;6:36003–36018.
46.
Niwa R, Natsume A, Uehara A, Wakitani M, Iida S, Uchida K, Satoh M, and Shitara K: IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides. J Immunol Methods 2005;306:151–160.
Information & Authors
Information
Published In
![cover image Monoclonal Antibodies in Immunodiagnosis and Immunotherapy](/cms/10.1089/mab.2017.36.issue-3/asset/15ccbfae-fe15-cbfa-afe1-ccbfaeafe15c/mab.2017.36.issue-3.cover.jpg)
Monoclonal Antibodies in Immunodiagnosis and Immunotherapy
Volume 36 • Issue Number 3 • June 2017
Pages: 104 - 112
PubMed: 28504613
Copyright
Copyright 2017, Mary Ann Liebert, Inc.
History
Published in print: June 2017
Published online: 1 June 2017
Published ahead of print: 15 May 2017
Accepted: 5 April 2017
Received: 26 February 2017
Topics
Authors
Author Disclosure Statement
No competing financial interests exist.
Metrics & Citations
Metrics
Citations
Export Citation
Export citation
Select the format you want to export the citations of this publication.
View Options
Access content
To read the fulltext, please use one of the options below to sign in or purchase access.⚠ Society Access
If you are a member of a society that has access to this content please log in via your society website and then return to this publication.