Research Article
No access
Published Online: 15 March 2010

Microarray Analysis of Efflux Pump Genes in Multidrug-Resistant Mycobacterium tuberculosis During Stress Induced by Common Anti-Tuberculous Drugs

Publication: Microbial Drug Resistance
Volume 16, Issue Number 1

Abstract

Treatment of multidrug-resistant tuberculosis has become one of the major problems in public health. Understanding the molecular mechanisms of drug resistance has been central to tuberculosis research in recent times. DNA microarray technology provides the platform to study the genomic variations related to these mechanisms on a comprehensive level. To investigate the role of efflux pumps in drug resistance, we have constructed a custom DNA microarray containing 25 drug efflux pump genes of Mycobacterium tuberculosis (Indian Patent file no. 2071/DEL/2007) and monitored changes in the expression of these genes on exposure of common anti-tuberculous drugs. Expression profiling of efflux pump genes in multidrug-resistant M. tuberculosis isolates showed overexpression of 10 genes following exposure to various anti-tuberculous drugs. Although two of these genes (Rv3065 and Rv2938) have already been reported to be active drug efflux pumps in M. tuberculosis in earlier studies, the increased activities of other eight efflux pump genes (Rv1819, Rv2209, Rv2459, Rv2477c, Rv2688, Rv2846, Rv2994, and Rv3728) have been demonstrated in multidrug-resistant isolates by us for the first time. After confirmation of differential expressions of these genes by real-time reverse transcription polymerase chain reaction, it was observed that a simultaneous overexpression of efflux pump genes Rv2459, Rv3728, and Rv3065 was associated with resistance to the combination of isoniazid and ethambutol, and these drugs, along with streptomycin, were identified to group together, where efflux-mediated drug resistance appears to be important in M. tuberculosis and follows a constant pattern of induction in multidrug-resistant isolates. Isoniazid and ethambutol combination was also found to be affected in 10% (6/60) of the clinical isolates in the presence of carbonyl cyanide m-chloro phenylhydrazone in resazurin microtitre plate assay, supporting the role of efflux pumps in the resistance to these drugs. Overexpression of two of the genes (Rv2477 and Rv2209) has also been observed with ofloxacin stress in M. tuberculosis.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Aires J.R.H. Nikaido2005. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coliJ. Bacteriol.1871923-1929. 1. Aires, J.R., and H. Nikaido. 2005. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J. Bacteriol. 187:1923–1929.
2.
Braibant M.P. GilotJ. Content2000. The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosisFEMS Microbiol. Rev.24449-467. 2. Braibant, M., P. Gilot, and J. Content. 2000. The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 24:449–467.
3.
Choudhuri B.S.S. BhaktaR. BarikJ. BasuM. KunduP. Chakrabarti2002. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosisBiochem. J.367279-285. 3. Choudhuri, B.S., S. Bhakta, R. Barik, J. Basu, M. Kundu, and P. Chakrabarti. 2002. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem. J. 367:279–285.
4.
Colangeli R.D. HelbS. SridharanJ. SunR. HarbacheuskiN.J. MegjugoracW.R. Jacobs Jr.A. HolzenburgJ.C. SacchettiniD. Alland2005. The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutolMol. Microbiol.551365-2958. 4. Colangeli, R., D. Helb, S. Sridharan, J. Sun, R. Harbacheuski, N.J. Megjugorac, W.R. Jacobs, Jr., A. Holzenburg, J.C. Sacchettini, and D. Alland. 2005. The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol. Mol. Microbiol. 55:1365–2958.
5.
Cole S.T.R. Brosch J.Parkhill T.Garnier D.Harris S.V.Gorden et al.1998. Deciphering the biology of Mycobacterium tuberculosis from complete genome sequenceNature93537-544. 5. Cole, S.T., R. Brosch, J. Parkhill, T. Garnier, D. Harris, S.V. Gorden,et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from complete genome sequence. Nature 93:537–544.
6.
Cole S.T.K. EiglmeierJ. ParkhillK.D. JamesN.R. ThomsonP.R. Wheeler et al.2001. Massive gene decay in the leprosy bacillusNature4091007-1011. 6. Cole, S.T., K. Eiglmeier, J. Parkhill, K.D. James, N.R. Thomson, P.R. Wheeler,et al. 2001. Massive gene decay in the leprosy bacillus. Nature 409:1007–1011.
7.
DeRossi E.M. BranzoniR. CantoniA. MilanoG. RiccardiO. Ciferri1998. mmr, a Mycobacterium tuberculosis gene conferring resistance to small cationic dyes and inhibitorsJ. Bacteriol.1806068-6071. 7. DeRossi, E., M. Branzoni, R. Cantoni, A. Milano, G. Riccardi, and O. Ciferri. 1998. mmr, a Mycobacterium tuberculosis gene conferring resistance to small cationic dyes and inhibitors. J. Bacteriol. 180:6068–6071.
8.
DeRossi E.J.A. AínsaG. Riccardi2006. Role of mycobacterial efflux transporters in drug resistance: an unresolved questionFEMS Microbiol. Rev.3036-52. 8. DeRossi, E., J.A. Aínsa, and G. Riccardi. 2006. Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol. Rev. 30:36–52.
9.
Doran J.L.Y. PangK.E. MdluliA.J. MoranT.C. VictorR.W. StokesE. MahenthiralingamB.N. KreiswirthJ.L. ButtG.S. BaronJ.D. TreitV.J. KerrP.D. van HeldenM.C. RobertsF.E. Nano1997. Mycobacterium tuberculosis efpA encodes an efflux protein of the QacA transporter familyClin. Diagn. Lab. Immunol.423-32. 9. Doran, J.L., Y. Pang, K.E. Mdluli, A.J. Moran, T.C. Victor, R.W. Stokes, E. Mahenthiralingam, B.N. Kreiswirth, J.L. Butt, G.S. Baron, J.D. Treit, V.J. Kerr, P.D. van Helden, M.C. Roberts, and F.E. Nano. 1997. Mycobacterium tuberculosis efpA encodes an efflux protein of the QacA transporter family. Clin. Diagn. Lab. Immunol. 4:23–32.
10.
Fu L.M.2006. Exploring drug action on Mycobacterium tuberculosis using affimatrix oligonucleotide genechipsTuberculosis86134-143. 10. Fu, L.M. 2006. Exploring drug action on Mycobacterium tuberculosis using affimatrix oligonucleotide genechips. Tuberculosis 86:134–143.
11.
Fu L.M.T.M. Shinnick2007. Understanding the action of INH on a highly INH-resistant Mycobacterium tuberculosis strain using geneChipsTuberculosis8763-70. 11. Fu, L.M., and T.M. Shinnick. 2007. Understanding the action of INH on a highly INH-resistant Mycobacterium tuberculosis strain using geneChips. Tuberculosis 87:63–70.
12.
Grosset J.H.S.T. Cole2001. Genomics and the chemotherapy of leprosyLepr. Rev.72429-440. 12. Grosset, J.H., and S.T. Cole. 2001. Genomics and the chemotherapy of leprosy. Lepr. Rev. 72:429–440.
13.
Gupta A.K.D.S. ChauhanK. SrivastavaR. DasS. BatraM. MittalP. GoswamiN. SinghalV.D. SharmaK. VenkatesanS.E. HasnainV.M. Katoch2006. Estimation of efflux mediated multi-drug resistance and its correlation with expression levels of two major efflux pumps in mycobacteriaJ. Commun. Dis.38246-254. 13. Gupta, A.K., D.S. Chauhan, K. Srivastava, R. Das, S. Batra, M. Mittal, P. Goswami, N. Singhal, V.D. Sharma, K. Venkatesan, S.E. Hasnain, and V.M. Katoch. 2006. Estimation of efflux mediated multi-drug resistance and its correlation with expression levels of two major efflux pumps in mycobacteria. J. Commun. Dis. 38:246–254.
14.
Jo J.T.F.S. BrinkmanR.E. Hancock2003. Aminoglycoside efflux in Pseudomonas aeruginosa: involvement of novel outer membrane proteinsAntimicrob. Agents Chemother.471101-1111. 14. Jo, J.T., F.S. Brinkman, and R.E. Hancock. 2003. Aminoglycoside efflux in Pseudomonas aeruginosa: involvement of novel outer membrane proteins. Antimicrob. Agents Chemother. 47:1101–1111.
15.
Kumar A.P.H. Schweizer2005. Bacterial resistance to antibiotics: active efflux and reduced uptakeAdv. Drug Deliv. Rev.571486-1513. 15. Kumar, A., and P.H. Schweizer. 2005. Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv. Drug Deliv. Rev. 57:1486–1513.
16.
Livak K.J.T.D. Schmittgen2001. Analysis of gene expression data using real-time quantitative PCR and the 2-ΔΔCT methodMethods25402-408. 16. Livak, K.J., and T.D. Schmittgen. 2001. Analysis of gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408.
17.
Lorca G.L.R.D. BaraboteV. ZlotopolskiC. TranB. WinnenR.N. HvorupA.J. StonestromE. NguyenL.W. HuangD.S. KimM.H. Saier Jr.2007. Transport capabilities of eleven gram-positive bacteria: comparative genomic analysesBiochim. Biophys. Acta17681342-1366. 17. Lorca, G.L., R.D. Barabote, V. Zlotopolski, C. Tran, B. Winnen, R.N. Hvorup, A.J. Stonestrom, E. Nguyen, L.W. Huang, D.S. Kim, and M.H. Saier, Jr. 2007. Transport capabilities of eleven gram-positive bacteria: comparative genomic analyses. Biochim. Biophys. Acta 1768:1342–1366.
18.
Martin A.M. CamachoF. PortaelsJ.C. Palomino2003. Resazurin microtitre assay plate testing of Mycobacterium tuberculosis susceptibilities to second-line drugs: rapid, simple and inexpensive methodAntimicrob. Agents Chemother.473616-3619. 18. Martin, A., M. Camacho, F. Portaels, and J.C. Palomino. 2003. Resazurin microtitre assay plate testing of Mycobacterium tuberculosis susceptibilities to second-line drugs: rapid, simple and inexpensive method. Antimicrob. Agents Chemother. 47:3616–3619.
19.
McDermott P.F.R.D. WalkerD.G. White2003. Antimicrobials: modes of action and mechanisms of resistanceInt. J. Toxicol.22135-143. 19. McDermott, P.F., R.D. Walker, and D.G. White. 2003. Antimicrobials: modes of action and mechanisms of resistance. Int. J. Toxicol. 22:135–143.
20.
Morris R.P.L. NguyenJ. GatfieldK. ViscontiK. NguyenD. SchnappingerS. EhrtY. LiuL. HeifetsJ. PietersG. SchoolnikC.J. Thompson2005. Ancestral antibiotic resistance in Mycobacterium tuberculosisProc. Natl. Acad. Sci. USA.10212200-12205. 20. Morris, R.P., L. Nguyen, J. Gatfield, K. Visconti, K. Nguyen, D. Schnappinger, S. Ehrt, Y. Liu, L. Heifets, J. Pieters, G. Schoolnik, and C.J. Thompson. 2005. Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA. 102:12200–12205.
21.
Palomino J.C.A. MartinM. CamachoH. GuerraJ. SwingsP. Portaels2002. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosisAntimicrob. Agents Chemother.442720-2722. 21. Palomino, J.C., A. Martin, M. Camacho, H. Guerra, J. Swings, and P. Portaels. 2002. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 44:2720–2722.
22.
Pao S.S.J.T. PaulsonM.H.C. Saier1998. Major facilitator superfamilyMicrobiol. Mol. Biol. Rev.621-34. 22. Pao, S.S., J.T. Paulson, and M.H.C. Saier. 1998. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62:1–34.
23.
Piddock L.J.2006. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteriaClin. Microbiol. Rev.19382-402. 23. Piddock, L.J. 2006. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev. 19:382–402.
24.
Poole K.2000. Efflux mediated resistance to fluoroquinolones in gram positive bacteria and the mycobacteriaAntimicrob. Agents Chemother.442595-2599. 24. Poole, K. 2000. Efflux mediated resistance to fluoroquinolones in gram positive bacteria and the mycobacteria. Antimicrob. Agents Chemother. 44:2595–2599.
25.
Poole K.2002. Mechanisms of bacterial biocide and antibiotic resistanceJ. Appl. Microbiol.9255S-64S. 25. Poole, K. 2002. Mechanisms of bacterial biocide and antibiotic resistance. J. Appl. Microbiol. 92:55S–64S.
26.
Saidijam M.G. BenedettiQ. RenZ. XuC.J. HoyleS.L. PalmerA. WardK.E. BettaneyG. SzakonyiJ. MeullerS. MorrisonM.K. PosP. ButayeK. WalravensK. LangtonR.B. HerbertR.A. SkurrayI.T. PaulsenJ. O'reillyN.G. RutherfordM.H. BrownR.M. BillP.J. Henderson2006. Microbial drug efflux proteins of the major facilitator superfamilyCurr. Drug Targets7793-811. 26. Saidijam, M., G. Benedetti, Q. Ren, Z. Xu, C.J. Hoyle, S.L. Palmer, A. Ward, K.E. Bettaney, G. Szakonyi, J. Meuller, S. Morrison, M.K. Pos, P. Butaye, K. Walravens, K. Langton, R.B. Herbert, R.A. Skurray, I.T. Paulsen, J. O'reilly, N.G. Rutherford, M.H. Brown, R.M. Bill, and P.J. Henderson. 2006. Microbial drug efflux proteins of the major facilitator superfamily. Curr. Drug Targets 7:793–811.
27.
Silva P.E.F. BigiM. de la Paz SantangeloM.I. RomanoC. MartinA. CataldiJ.A. Aínsa2001. Characterization of P55, a multidrug efflux pump in Mycobacterium bovis and Mycobacterium tuberculosisAntimicrob. Agents Chemother.45800-804. 27. Silva, P.E., F. Bigi, M. de la Paz Santangelo, M.I. Romano, C. Martin, A. Cataldi, and J.A. Aínsa. 2001. Characterization of P55, a multidrug efflux pump in Mycobacterium bovis and Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 45:800–804.
28.
Waddell S.J.R.A. StablerK. LaingL. KremerR.C. ReynoldsG.S. Besra2004. The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compoundsTuberculosis84263-274. 28. Waddell, S.J., R.A. Stabler, K. Laing, L. Kremer, R.C. Reynolds, and G.S. Besra. 2004. The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis 84:263–274.
29.
Wang X.B. Seed2003. Selection of oligonucleotide probes for protein coding sequencesBioinformatics19796-802. 29. Wang, X., and B. Seed. 2003. Selection of oligonucleotide probes for protein coding sequences. Bioinformatics 19:796–802.
30.
Webber M.A.L.J.V. Piddock2003. The importance of efflux pumps in bacterial antibiotic resistanceJ. Antimicro. Chemother.519-11. 30. Webber, M.A., and L.J.V. Piddock. 2003. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicro. Chemother. 51:9–11.
31.
Wilson M.J. DeRisiH.H. KristensenP. ImbodenS. RaneP.O. BrownG.K. Schoolnik1999. Exploring drug-induced alterations in gene expression in Myocbacterium tuberculosis by microarray hybridizationProc. Natl. Acad. Sci. USA.9612833-12838. 31. Wilson, M., J. DeRisi, H.H. Kristensen, P. Imboden, S. Rane, P.O. Brown, and G.K. Schoolnik. 1999. Exploring drug-induced alterations in gene expression in Myocbacterium tuberculosis by microarray hybridization. Proc. Natl. Acad. Sci. USA. 96:12833–12838.
28
32.
World Health Organization1993. Tuberculosis: a global emergencyWorld Health Forum14438. 32. World Health Organization. 1993. Tuberculosis: a global emergency. World Health Forum 14:438.
33.
World Health Organization2008Global tuberculosis control—surveillance, planning, financing. WHO report 2008GenevaWorld Health Organization (WHO/HTM/TB/2007.393). 33. World Health Organization. 2008. Global tuberculosis control—surveillance, planning, financing. WHO report 2008. Geneva, World Health Organization (WHO/HTM/TB/2007.393).
34.
Wright G.D.2003. Mechanisms of resistance to antibioticsCurr. Opin. Chem. Biol.7563-569. 34. Wright, G.D. 2003. Mechanisms of resistance to antibiotics. Curr. Opin. Chem. Biol. 7:563–569.

Information & Authors

Information

Published In

cover image Microbial Drug Resistance
Microbial Drug Resistance
Volume 16Issue Number 1March 2010
Pages: 21 - 28
PubMed: 20001742

History

Published online: 15 March 2010
Published in print: March 2010
Published ahead of print: 14 December 2009

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Anuj Kumar Gupta
Department of Microbiology and Molecular Biology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (NJILOMD), Agra, India.
Vishwa Mohan Katoch
Department of Microbiology and Molecular Biology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (NJILOMD), Agra, India.
Devendra Singh Chauhan
Department of Microbiology and Molecular Biology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (NJILOMD), Agra, India.
Rahul Sharma
Department of Microbiology and Molecular Biology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (NJILOMD), Agra, India.
Mradula Singh
Department of Microbiology and Molecular Biology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (NJILOMD), Agra, India.
Krishnamurthy Venkatesan
Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (NJILOMD), Agra, India.
Vishnu Dutt Sharma
Department of Microbiology and Molecular Biology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (NJILOMD), Agra, India.

Notes

Address correspondence to:Vishwa Mohan Katoch, M.D.Indian Council of Medical ResearchMinistry of Health & Family WelfareV. Ramalingaswami Bhawan, Ansari NagarNew Delhi 110029India
E-mail: [email protected]

Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top