Transglutaminse 2 and EGGL, the Protein Cross-Link Formed by Transglutaminse 2, As Therapeutic Targets for Disabilities of Old Age
Abstract
Aging of the extracellular matrix (ECM), the protein matrix that surrounds and penetrates the tissues and binds the body together, contributes significantly to functional aging of tissues. ECM proteins become increasingly cross-linked with age, and this cross-linking is probably important in the decline of the ECM's function. This article reviews the role of ε-(γ-glutamyl)-lysine (EGGL), a cross-link formed by transglutaminase enzymes, and particularly the widely expressed isozyme transglutaminase 2 (TG2), in the aging ECM. There is little direct data on EGGL accumulation with age, and no direct evidence of a role of EGGL in the aging of the ECM with pathology. However, several lines of circumstantial evidence suggest that EGGL accumulates with age, and its association with pathology suggests that this might reflect degradation of ECM function. TG activity increases with age in many circumstances. ECM protein turnover is such that some EGGL made by TG is likely to remain in place for years, if not decades, in healthy tissue, and both EGGL and TG levels are enhanced by age-related diseases. If further research shows EGGL does accumulate with age, removing it could be of therapeutic benefit. Also reviewed is the blockade of TG and active removal of EGGL as therapeutic strategies, with the conclusion that both have promise. EGGL removal may have benefit for acute fibrotic diseases, such as tendinopathy, and for treating generalized decline in ECM function with old age. Extracellular TG2 and EGGL are therefore therapeutic targets both for specific and more generalized diseases of aging.
Get full access to this article
View all available purchase options and get full access to this article.
References
1.
Lai-Fook SJ, Hyatt RE. Effects of age on elastic moduli of human lungs. J Appl Physiol 2000;89:163–168.
2.
Haskett D, Johnson G, Zhou A, Utzinger U, Vande Geest J. Microstructural and biomechanical alterations of the human aorta as a function of age and location. Biomechan Modeling Mechanobiol 2010;9:725–736.
3.
Sell DR, Monnier VM. Molecular basis of arterial stiffening: Role of glycation—a mini-review. Gerontology 2012;58:227–237.
4.
Soldatos G, Cooper ME. Advanced glycation end products and vascular structure and function. Curr Hypertens Rep 2006;8:472–478.
5.
Zimmermann EA, Schaible E, Bale H, Barth HD, Tang SY, Reichert P, Busse B, Alliston T, Ager JW, Ritchie RO. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc Natl Acad Sci USA 2011;108:14416–14421.
6.
Tang SY, Vashishth D. Non-enzymatic glycation alters microdamage formation in human cancellous bone. Bone 2010;46:148–154.
7.
Bouxsein ML. Overview of bone structure and strength. In: Genetics of Bone Biology and Skeletal Disease. Academic Press, San Diego, 2013, pp. 25–34.
8.
Zimmerman SD, McCormick RJ, Vadlamudi RK, Thomas DP. Age and training alter collagen characteristics in fast- and slow-twitch rat limb muscle. J Appl Physiol 1993;75: 1670–1674.
9.
Gosselin LE, Adams C, Cotter TA, McCormick RJ,. Thomas DP. Effect of exercise training on passive stiffness in locomotor skeletal muscle: Role of extracellular matrix. J Appl Physiol 1998;85:1011–1016.
10.
Couppé C, Hansen P, Kongsgaard M, Kovanen V, Suetta C, Aagaard P, Kjær M, Magnusson SP. Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J Appl Physiol 2009;107:880–886.
11.
van Boekel MA, Hoenders HJ. Glycation-induced crosslinking of calf lens crystallins. Exp Eye Res 1991;53:89–94.
12.
Heys KR, Cram SL, Truscott RJW. Massive increase in the stiffness of the human lens nucleus with age: The basis for presbyopia? Mol Vision 2004;10:956–963.
13.
Karsdal MA, Nielsen MJ, Sand JM, Henriksen K, Genovese F, Bay-Jensen A-C, Smith V, Adamkewicz JI, Christiansen C, Leeming DJ. Possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev Technol 2013;11:70–92.
14.
Bailey AJ, Paul RG, Knott L. Mechanisms of maturation and ageing of collagen. Mech Ageing Dev 1998;106:1–56.
15.
Trappe TA, Carroll CC, Dickinson JM, LeMoine JK, Haus JM, Sullivan BE, Lee JD, Jemiolo B, Weinheimer EM, Hollon CJ. Influence of acetaminophen and ibuprofen on skeletal muscle adaptations to resistance exercise in older adults. Am J Physiol 2011;300:R655–R662.
16.
Fritze O, Romero B, Schleicher M, Jacob MP, Oh DY, Starcher B, Schenke-Layland K, Bujan J, Stock UA. Age-related changes in the elastic tissue of the human aorta. J Vasc Res 2012;49:77–86.
17.
Sjoberg JS, Bulterijs S. Characteristics, formation, and pathophysiology of glucosepane: A major protein cross-link. Rejuvenation Res 2009;12:137–148.
18.
Esposito C, Caputo I. Mammalian transglutaminases. FEBS J 2005;272:615–631.
19.
Lorand L, Graham RM. Transglutaminases: Crosslinking enzymes with pleiotropic functions. Nat Reviews Med Cell Biol 2003;4:140–156.
20.
Iismaa SE, Mearns BM, Lorand L, Graham RM. Transglutaminases and disease: Lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 2009;89:991–1023.
21.
Badarau E, Collighan RJ, Griffin M. Recent advances in the development of tissue transglutaminase (TG2) inhibitors. Amino Acids 2013;44:119–127.
22.
Mishra S, Murphy LJ. Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein 3 kinase. J Biol Chem 2004;279:23863–23868.
23.
Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y. A novel function of tissue-type transglutaminase: Protein disulphide isomerase. Biochem J 2003;373:793–803.
24.
Nakaoka H, Perez DM, Baek KJD, Das T, Husain A, Misono K, Im MJ, Graham RM. Gh: A GTP-binding protein with transglutaminase activity and receptor signaling function. Science 1994;264:1593–1596.
25.
Park D, Choi SS, Ha KS. Transglutaminase 2: A multi-functional protein in multiple subcellular compartments. Amino Acids 2010;39:619–631.
26.
Griffin M, Casadio R, Bergamini CM. Transglutaminases: Nature's biological glues. Biochem J 2002;368:377–396.
27.
Fesus L, Piacentini M. Transglutaminase 2: An enigmatic enzyme with diverse functions. Trends Biochem Sci 2002;27:534–539.
28.
Monsonego A, Shani Y, Friedmann I, Paas Y, Eizenberg O, Schwartz M. Expression of GTP-dependent and GTP-independent tissue-type transglutaminase in cytokine-treated rat brain astrocytes. J Biol Chem 1997;272:3724–3732.
29.
Lai T-S, Liu Y, Li W, Greenberg CS. Identification of two GTP-independent alternatively spliced forms of tissue transglutaminase in human leukocytes, vascular smooth muscle, and endothelial cells. FASEB J 2007;21:4131–4143.
30.
Phatak VM, Croft SM, Rameshaiah Setty SG, Scarpellini A, Hughes DC, Rees R, McArdle S, Verderio EAM. Expression of transglutaminase-2 isoforms in normal human tissues and cancer cell lines: Dysregulation of alternative splicing in cancer. Amino Acids 2013;44:33–44.
31.
Fisher M, Jones RA, Huang L, Haylor JI, Nahas M, Griffin M, Johnson TS. Modulation of tissue transglutaminase in tubular epithelial cells alters extracellular matrix levels: A potential mechanism of tissue scarring. Matrix Biol 2009;28:20–31.
32.
van den Akker J, van Weert A, Afink G, Bakker ENTP, van der Pol E, Boing AN, VanBavel E. Transglutaminase 2 is secreted from smooth muscle cells by transamidation-dependent microparticle formation. Amino Acids 2012;42:961–973.
33.
VanWijk MJ, VanBavel E, Sturk A, Nieuwland R. Microparticles in cardiovascular diseases. Cardiovasc Res 2003;59:277–287.
34.
Mause SF, Weber C. Microparticles: Protagonists of a novel communication network for intercellular information exchange. Circ Res 2010;107:1047–1057.
35.
Keresztessy Z, Csősz É, Hársfalvi J, Csomós K, Gray J, Lightowlers RN, Lakey JH, Balajthy Z, Fésüs L. Phage display selection of efficient glutamine-donor substrate peptides for transglutaminase 2. Protein Sci 2006;15:2466–2480.
36.
Hitomi K, Kitamura M, Sugimura Y. Preferred substrate sequences for transglutaminase 2: Screening using a phage-displayed peptide library. Amino Acids 2009;36:619–624.
37.
Lee J-H, Song C, Kim D-H, Park I-H, Lee S-G, Lee Y-S, Kim B-G. Glutamine (Q)-peptide screening for transglutaminase reaction using mRNA display. Biotechnol Bioeng 2012;110:353–362.
38.
Sugimura Y, Yamashita H, Hitomi K. Screening of substrate peptide sequences for tissue-type transglutaminase (TGase 2) using T7 phage cDNA library. Cytotechnology 2011;63:111–118.
39.
Groenen PJTA, Smulders RHPH, Peters RFR, Grootjans JJ, Van Den Ijssel PRLA, Bloemendal H, De Jong WW. The amine-donor substrate specificity of tissue-type transglutaminase. Eur J Biochem 1994;220:795–799.
40.
Csosz E, Bagossi P, Nagy Z, Dosztanyi Z, Simon I, Fesus L. Substrate preference of transglutaminase 2 revealed by logistic regression analysis and intrinsic disorder examination. J Mol Biol 2008;383:390–402.
41.
Williams-Ashman HG, Canellakis ZN. Transglutaminase-mediated covalent attachment of polyamines to proteins: Mechanisms and potential physiological significance. Physiol Chem Phys 1980;12:457–472.
42.
Folk JE, Park MH, Chung SI, Schrode J, Lester EP, Cooper HL. Polyamines as physiological substrates for transglutaminases. J Biol Chem 1980;255:3695–3700.
43.
Tabolacci C, Lentini A, Provenzano B, Beninati S. Evidences for a role of protein cross-links in transglutaminase-related disease. Amino Acids 2012;42:975–986.
44.
Beninat S, Senger DR, Cordella-Miele E, Mukherjee AB, Chackalaparampil I, Shanmugam V, Singh KM, Muhkerjee BB. Osteopontin: Its transglutaminase-catalyzed posttranslational modifications and cross-linking to fibronectin. J Biochem 1994;115:255–258.
45.
Gilad GM, Casero RAJ. Busto R, Globus MY. Polyamines in rat brain extracellular space after ischemia. Mol Chem Neuropathol 1993;18:27–33.
46.
Siegel M, Strnad P, Watts RE, Choi K, Jabri B, Omary MB, Khosla C. Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury. PLoS One 2008;3:e1861.
47.
Burgoyne RD, Weiss JL. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 2001:353:1–12.
48.
Király R, Demény M, Fésüs L. Protein transamidation by transglutaminase 2 in cells: A disputed Ca2+-dependent action of a multifunctional protein. FEBS J 2011;278:4717–4739.
49.
Achyuthan KE, Greenberg CS. Identification of a guanosine triphosphate-binding site on guinea pig liver transglutaminase. Role of GTP and calcium ions in modulating activity. J Biol Chem 1987;262:1901–1906.
50.
Begg GE, Carrington L, Stokes PH, Matthews JM, Wouters MA, Husain A, Lorand L, Iismaa SE, Graham RM. Mechanism of allosteric regulation of transglutaminase 2 by GTP. Proc Natl Acad Sci USA 2006;103:19683–19688.
51.
Pinkas DM, Strop P, Brunger AT, Khosla C. Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 2007;5;2788–2796.
52.
Iismaa SEW, Wu MJ, Nanda N, Church WB, Graham RM. GTP binding and signaling by Gh/transglutaminase II involves distinct residues in a unique GTP-binding pocket. J Biol Chem 2000;275:18259–18265.
53.
Bergamini CM. GTP modulates calcium binding and cation-induced conformational changes in erythrocyte transglutaminase. FEBS Lett 1988;239:255–258.
54.
Santhanam L, Tuday EC, Webb AK, Dowzicky P, Kim JH, Oh YJ, Sikka G, Kuo M, Halushka MK, Macgregor AM, Dunn J, Gutbrod S, Yin D, Shoukas A, Nyhan D, Flavahan NA, Belkin AM, Berkowitz DE. Decreased S-nitrosylation of tissue transglutaminase contributes to age-related increases in vascular stiffness. Circ Res 2010;107:117–125.
55.
Lai TS, Hausladen A, Slaughter TF, Eu JP, Stamler JS, Greenberg CS. Calcium regulates S-nitrosylation, denitrosylation, and activity of tissue transglutaminase. Biochemistry 2001;40:4904–4910.
56.
Citi S. Protein kinase inhibitors prevent junction dissociation induced by low extracellular calcium in MDCK epithelial cells. J Cell Biol 1992;117:169–178.
57.
Supinski G, Nethery D, Stofan D, DiMarco A. Extracellular calcium modulates generation of reactive oxygen species by the contracting diaphragm. J Appl Physiol 1999;87:2177–2185.
58.
Stokes BT, Fox P, Hollinden G. Extracellular calcium activity in the injured spinal cord. Exp Neurol 1983;80:561–572.
59.
Moriya T, Hassan AZ, Young W, Chesler M. Dynamics of extracellular calcium activity following contusion of the rat spinal cord. J Neurotrauma 1994;11:255–263.
60.
Stokes B, Somerson S. Spinal cord extracellular microenvironment. Neurochem Pathol 1987;7:47–55.
61.
Yuspa SH, Kilkenny AE, Steinert PM, Roop DR. Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro. J Cell Biol 1989;109:1207–1217.
62.
Lee SH, Elias PM, Proksch E, Menon GK, Mao-Quiang M, Feingold KR. Calcium and potassium are important regulators of barrier homeostasis in murine epidermis. J Clin Invest 1992;89:530–538.
63.
Pillai S, Bikle DD, Mancianti M-L, Cline P, Hincenbergs M. Calcium regulation of growth and differentiation of normal human keratinocytes: Modulation of differentiation competence by stages of growth and extracellular calcium. J Cell Physiol 1990;143:294–302.
64.
Dvorak MM, Siddiqua A, Ward DT, Carter DH, Dallas SL, Nemeth EF, Riccardi D. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci USA 2004;101:5140–5145.
65.
Balsinde J, Fernández B, Diez E. Regulation of arachidonic acid release in mouse peritoneal macrophages. The role of extracellular calcium and protein kinase C. J Immunol 1990;144:4298–4304.
66.
Betsholtz C, Westermark B. Growth factor-induced proliferation of human fibroblasts in serum-free culture depends on cell density and extracellular calcium concentration. J Cell Physiol 1984;118:203–210.
67.
Kanatani M, Sugimoto T, Fukase M, Fujita T. Effect of elevated extracellular calcium on the proliferation of osteoblastic MC3T3-E1 cells: Its direct and indirect effects via monocytes. Biochem Biophys Res Commun 1991;181:1425–1430.
68.
Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 1995;121:1129–1137.
69.
Traut T. Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 1994;140:1–22.
70.
Stamnaes J, Pinkas DM, Fleckenstein B, Khosla C, Sollid LM. Redox regulation of transglutaminase 2 activity. J Biol Chem 2010;285:25402–25409.
71.
Nagy L, Thomázy VA, Saydak MM, Stein JP, Davies PJ.The promoter of the mouse tissue transglutaminase gene directs tissue-specific, retinoid-regulated and apoptosis-linked expression. Cell Death Differ 1997;4:534–547.
72.
Lee ZW, Kwon SM, Kim SW, Yi SJ, Kim YM, Ha KS. Activation of in situ tissue transglutaminase by intracellular reactive oxygen species. Biochem Biophys Res Commun 2003;305:633–640.
73.
Bergamini CM. Effects of ligands on the stability of tissue transglutaminase: Studies in vitro suggest possible modulation by ligands of protein turn-over in vivo. Amino Acids 2007;33:415–421.
74.
Casadio R, Polverini E, Mariani P, Spinozzi F, Carsughi F, Fontana A, de Laureto PP, Matteucci G, Bergamini CM. The structural basis for the regulation of tissue transglutaminase by calcium ions. Eur J Biochem 1999;262:3 (672–679).
75.
Pontremoli S, Melloni E. Extralysosomal protein degradation. Annu Rev Biochem 1986;55:455–481.
76.
Qian R-Q, Glanville RW. Alignment of fibrillin molecules in elastic microfibrils is defined by transglutaminase-derived cross-links. Biochemistry 1997;36:15841–15847.
77.
Gaudry CA, Verderio E, Aeschlimann D, Cox A, Smith C, Griffin M. Cell surface localization of tissue transglutaminase is dependent on a fibronectin-binding site in its N-terminal beta-sandwich domain. J Biol Chem 1999;274:30707–30714.
78.
Macdonald JA. Extracellular matrix assembly. Annu Rev Cell Biol 1988;4:183–207.
79.
Akimov SS, Belkin AM. Cell-surface transglutaminase promotes fibronectin assembly via interaction with the gelatin-binding domain of fibronectin. J Cell Sci 2001;114: 2989–3000.
80.
Aeschlimann D, Kaupp O, Paulsson M. Transglutaminase-catalyzed matrix cross-linking in differentiating cartilage: Identification of osteonectin as a major glutaminyl substrate. J Cell Biol 1995;129: 881–892.
81.
Kleman J-P, Aeschlimann D, Paulsson M, van der Rest M. Transglutaminase-catalyzed crosslinking of fibrils of collagen V/XI in A204 rhabdomyosarcoma cells. Biochemistry 1995;34:13768–13775.
82.
Bowness JM, Folk JE, Timpl R. Identification of a substrate site for liver transglutaminase on the aminopropeptide of type III collagen. J Biol Chem 1987;262:1022– 1024.
83.
Anwar R, Miloszewski KJA. Factor XIII deficiency. Br J Haematol 1999;107:468–484.
84.
Peterson LL, Zettergren JG, Wuepper KD. Biochemistry of transglutaminases and cross-linking in the skin. J Invest Dermatol 1983;81:95s–100s.
85.
Kalinin AE, Kajava AV, Steinert PM. Epithelial barrier function: Assembly and structural features of the cornified cell envelope. BioEssays 2002;24:789–800.
86.
O'Regan GM, Sandilands A, McLean WHI, Irvine AD. Filaggrin in atopic dermatitis. J Allergy Clin Immunol 2009;124(Suppl 2):R2–R6.
87.
Matsuki M, Yamashita F, Ishida-Yamamoto A, Yamada K, Kinoshita C, Fushiki S, Ueda E, Morishima Y, Tabata K, Yasuno H, Hashida M, Iizuka H, Ikawa M, Okabe M, Kondoh G, Kinoshita T, Takeda J, Yamanishi K. Defective stratum corneum and early neonatal death in mice lacking the gene for transglutaminase 1 (keratinocyte transglutaminase). Proce Nat l Acad Sci USA 1998;95:1044–1049.
88.
Kuramoto N, Takizawa T, Takizawa T, Matsuki M, Morioka H, Robinson JM, Yamanshi K. Development of ichthyosiform skin compensates for defective permeability barrier function in mice lacking transglutaminase 1. J Clin Invest 2002;109:243–250.
89.
Russell LJ, DiGiovanna JJ, Rogers GR, Steinert PM, Hashem N, Compton JG, Bale SJ. Mutations in the gene for transglutaminase 1 in autosomal recessive lamellar ichthyosis. Nat Genet 1995;9:279–283.
90.
Schittny JC, Paulsson M, Vallan C, Burri PH, Kedei N, Aeschlimann D. Protein cross-linking mediated by tissue transglutaminase correlates with the maturation of extracellular matrices during lung development. Am J Resp Cell Mol Bio 1997;17:334–343.
91.
Lee SK, Chi JG, Park SC, Chung SI. Transient expression of transglutaminase c during prenatal development of human muscles. J Histochem Cytochem 2000;48:1565–1574.
92.
Bowness MJ, Tarr AH, Wong T. Increased transglutaminase activity during skin wound healing in rats. Biochim Biophys Acta 1988;967:234–240.
93.
Verderio EAM, Johnson T, Griffin M. Tissue transglutaminase in normal and abnormal wound healing: Review article. Amino Acids 2004;26:387–404.
94.
Haroon ZA, Hettasch JM, Lai T-S, Dewhirst MW, Greenberg CS. Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis. FASEB J 1999;13:1787–1795.
95.
Upchurch HF, Conway E, Patterson MK, Maxwell MD.Localization of cellular transglutaminase on the extracellular matrix after wounding: Characteristics of the matrix bound enzyme. J Cell Physiol 1991;149:375–382.
96.
Linge C, Richardson J, Vigor C, Clayton E, Hardas B, Rolfe K. Hypertrophic scar cells fail to undero a form of aopotosis specific to contractile collagen—the role of transglutaminase. J Invest Dermatol 2005;125:72— 82.
97.
Yawo H, Kuno M. Calcium dependence of membrane sealing at the cut end of the cockroach giant axon. J Neurosci 1985;5:1626–1632.
98.
Xie XY, Barrett JN. Membrane resealing in cultured rat septal neurons after neurite transection: Evidence for enhancement by Ca(2+)-triggered protease activity and cytoskeletal disassembly. J Neurosci 1991;11:3257–3267.
99.
Wu J, Zern MA. Tissue transglutaminase, a key enzyme involved in liver diseases. Hepatol Res 2004;29:1–8.
100.
Fesus L, Madi A, Balajthy Z, Nemes ZS, Szondy Z. Transglutaminase induction by various cell death and apoptosis pathways. Experientia 1996;52:942–949.
101.
Fésüs L, Szondy Z. Transglutaminase 2 in the balance of cell death and survival. FEBS Lett 2005;579:3297–3302.
102.
Collighan RJ, Griffin M. Transglutaminase 2 cross-linking of matrix proteins: Biological significance and medical applications. Amino Acids 2009;36:659–670.
103.
Kim S-Y, Jeitner TM, Steinert PM. Transglutaminases in disease. Neurochem Int 2002;40:85–103.
104.
Piacentini M. Tissue transglutaminase: A candidate effector element of physiological cell death. Curr Top Microbiol Immunol 1995;200:163–175.
105.
Tucholski J, Johnson GVW. Tissue transglutaminase differentially modulates apoptosis in a stimuli-dependent manner. J Neurochem 2002;81:780–791.
106.
Davies PJ, Davies DR, Levitzki A, Maxfield FR, Milhaud P, Willingham MC, Pastan IH. Transglutaminase is essential in receptor-mediated endocytosis of alpha 2-macroglobulin and polypeptide hormones. Nature 1980;283:162–167.
107.
Van Leuven F, Cassiman J-J, Van Den Berghe H. Primary amines inhibit recycling of α2M receptors in fibroblasts. Cell 1980;20:37–43.
108.
Levitzki A, Willingham M, Pastan I. Evidence for participation of transglutaminase in receptor-mediated endocytosis. Proc Natl Acad Sci USA 1980;77:2706–2710.
109.
Szondy Z, Sarang Z, Molnár P, Németh T, Piacentini M, Mastroberardino PG, Falasca L, Aeschlimann D, Kovács J, Kiss I, Szegezdi É, Lakos G, Rajnavölgyi É, Birckbichler PJ, Melino G, Fésüs L Transglutaminase 2−/− mice reveal a phagocytosis-associated crosstalk between macrophages and apoptotic cells. Proc Natl Acad Sci USA 2003;100:7812–7817.
110.
Nanda N, Iismaa SE, Owens WA, Husain A, Mackay F, Graham RM. Targeted inactivation of gh/tissue transglutaminase II. J Biol Chem 2001;276:20673–20678.
111.
De Laurenzi V, Melino G. Gene disruption of tissue transglutaminase. Mol Cell Biol 2001;21:148–155.
112.
Tarantino U, Oliva F, Taurisano G, Orlandi A, Pietroni V, Candi E, Melino G, Maffulli N. FXIIIa and TGF-β over-expression produces normal musculo-skeletal phenotype in TG2−/− mice. Amino Acids 2009;36:679–684.
113.
Bakker ENTP, Pistea A, Spaan JAE, Rolf T, de Vries CJ, van Rooijen N, Candi E, VanBavel E. Flow-dependent remodeling of small arteries in mice deficient for tissue-type transglutaminase: Possible compensation by macrophage-derived Factor XIII. Circ Res 2006;99:86–92.
114.
Stephens P, Grenard P, Aeschlimann P, Langley M, Blain E, Errington R, Kipling D, Thomas D, Aeschlimann D. Crosslinking and G-protein functions of transglutaminase 2 contribute differentially to fibroblast wound healing responses. J Cell Sci 2004;117:3389–3403.
115.
Johnson KB, Petersen-Jones H, Thompson JM, Hitomi K, Itoh M, Bakker ENTP, Johnson GVW, Colak G, Watts SW. Vena cava and aortic smooth muscle cells express transglutaminases 1 and 4 in addition to transglutaminase 2. Am J Physiol Heart Circ Physiol 2012;302:H1355–H1366.
116.
Bar KJ, Franke S, Wenda B, Muller S, Kientsch-Engel R, Stein G, Sauer H. Pentosidine and N-episilon-(carboxymethyl)-lysine in Alzheimer's disease and vascular dementia. Neurobiol Aging 2003;24:333–338.
117.
Sarvari M, Karpati L, Fesus L, Deli L, Muszbek L, Nemes Z. Competitive enzyme-linked immunosorbent assay for N-epsilon-(gamma-glutamyl)-lysine. Anal Biochem 2002;311:187–190.
118.
Nemes Z, Petrovski G, Fesus L. Tools for the detection and quantitation of protein transglutamination. Anal Biochem 2005;342:1–10.
119.
Hoffner G, van der Rest G, Dansette PM, Djian P. The end product of transglutaminase crosslinking: Simultaneous quantitation of [Nε-(γ-glutamyl) lysine] and lysine by HPLC–MS. Anal Biochem 2009;384:296–304.
120.
Cernadas MR, de Miguel LS, García-Durán M, González-Fernández F, Millás I, Montón M, Rodrigo J, Rico L, Fernández P, de Frutos T, Rodríguez-Feo JA, Guerra J, Caramelo C, Casado S, López-Farré A. Vena cava and aortic smooth muscle cells express transglutaminases 1 and 4 in addition to transglutaminase 2, Expression of constitutive and inducible nitric oxide synthases in the vascular wall of young and aging rats. Circ Res 1998;83:279–286.
121.
Nemes Z, Devreese B, Steinert PM, van Beeumen J, Fesus L. Cross-linking of ubiquitin, HSP27, parkin, and α-synuclein by γ-glutamyl-ε-lysine bonds in Alzheimer's neurofibrillary tangles. FASEB J 2004;18:1135–1137.
122.
Suzuki Y, Kuroda H, Kanbe N, Takenouchi M. Analysis of biochemical components of human skin corneocytes prepared non-invasively by tape-stripping. Nippon Koshohin Gakkaishi 2007;31:69–77.
123.
Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KE, Elias PM. The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest 1995;95:2281–2290.
124.
Smith SM, Nillen JL, LeBlanc A, Lipton A, Demers LM, Lane HW, Leach CS. Collagen cross-link excretion during space flight and bed rest. J Clin Endocrinol Metab 1998;83:3584–3591.
125.
Johnson K, Hashimoto S, Lotz M, Pritzker K, Terkeltaub R. Interleukin-1 induces pro-mineralizing activity of cartilage tissue transglutaminase and Factor XIIIa. Am J Pathol 2001;159:149–163.
126.
Park SC, Yeo EJ,. Han JA, Hwang YC, Choi JY, Park JS, Park YH, Kim KO, Kim I.-G, Seong SC, Kwak SJ. Aging process is accompanied by increase of transglutaminase C. The J Gerontol Ser A: Biol Sci Med Sci 1999;54:B78–B83.
127.
Enderlin V, Pallet V, Alfos S, Dargelos E, Jaffard R, Garcin H, Higueret P. Age-related decreases in mRNA for brain nuclear receptors and target genes are reversed by retinoic acid treatment. Neurosci Lett 1997;229:125–129.
128.
Rosenthal AK, Derfus BA, Henry LA. Transglutaminase activity in aging articular chondrocytes and articular cartilage vesicles. Arthritis Rheum 1997;40:966–970.
129.
Lavie L, Weinreb O. Age- and strain-related changes in tissue transglutaminase activity in murine macrophages: the effects of inflammation and induction by retinol. Mech Ageing Dev 1996;90:129–143.
130.
Singhal PC, Reddy K, Franki N, Sanwal V, Kapasi A, Gibbons N, Mattana J, Valderrama E. Age and sex modulate renal expression of SGP-2 and transglutaminase and apoptosis of splenocytes, thymocytes, and macrophages. J Investig Med 1997;45:567–575.
131.
Robinson NE. Protein deamidation. Proc Natl Acad Sci USA 2002;99:5283–5288.
132.
Robinson NE, Robinson AB. Prediction of primary structure deamidation rates of asparaginyl and glutaminyl peptides through steric and catalytic effects. J Peptide Res 2004;63:437–448.
133.
Sivan S-S, Van El B, Merkher Y, Schmelzer CEH, Zuurmond A-M, Heinz A, Wachtel E, Varga P-P, Lazary A, Brayda-Bruno M, Maroudas A. Longevity of elastin in human intervertebral disc as probed by the racemization of aspartic acid. Biochim Biophys Acta 2012;1820:1671–1677.
134.
Vivó M, Vera Nd, Cortés R, Mengod G, Camón Ls, Martínez E. Polyamines in the basal ganglia of human brain. Influence of aging and degenerative movement disorders. Neurosci Lett 2001;304:107–111.
135.
Morrison LD, Becker L, Ang LC, Kish SJ. Polyamines in human brain: Regional distribution and influence of aging. J Neurochem 1995;65:636–642.
136.
Soda K, Dobashi Y, Kano Y, Tsujinaka S, Konishi F. Polyamine-rich food decreases age-associated pathology and mortality in aged mice. Exp Gerontol 2009;44:727–732.
137.
Lee C-K, Klopp RG, Weindruch R, Prolla TA. Gene expression profile of aging and its retardation by caloric restriction. Science 1999;285:1390–1393.
138.
Yu BP, Masoro EJ, Murata I, Bertrand HA, Lynd FT. Life span study of SPF Fischer 344 male rats fed ad libitum or restricted diets: Longevity, growth, lean body mass and disease. J Gerontol 1982;37:130–141.
139.
Mohan S, Radha E. Age-related changes in rat muscle collagen. Gerontology 1980;26:61– 67.
140.
Haus JM, Carrithers JA, Trappe SW, Trappe TA. Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. J Appl Physiol 2007;103:2068–2076.
141.
Varani J, Warner RL, Gharaee-Kermani M, Phan SH, Kang S, Chung J, Wang Z, Datta SC, Fisher GJ, Voorhees JJ. Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J Invest Dermatol 2000;114:480–486.
142.
Wachtel E, Maroudas A, Schneiderman R. Age-related changes in collagen packing of human articular cartilage. Biochimi Biophys Acta 1995;1243:239–243.
143.
Oakley AJ, Coggan M, Board PG. Identification and characterization of γ-glutamylamine cyclotransferase, an enzyme responsible for γ-glutamyl-ε-lysine catabolism. J Biol Chem 2010;285:9642–9648.
144.
Fink ML, Chung SI, Folk JE. Gamma-glutamylamine cyclotransferase: Specificity toward epsilon-(L-gamma-glutamyl)-L-lysine and related compounds. Proc Natl Acad Sci USA 1980;77:4564–4568.
145.
Bowser T, Trawick M. Probing the specificity of gamma-glutamylamine cyclotransferase: An enzyme involved in the metabolism of transglutaminase-catalyzed protein crosslinks. Amino Acids 2013;44:143–150.
146.
Shi M, Gozal E, Choy HA, Forman HJ. Extracellular glutathione and gamma-glutamyl transpeptidase prevent H2O2-induced injury by 2,3-dimethoxy-1,4-naphthoquinone. Free Radic Biol Med 1993;15:57–67.
147.
Seguro K, Kumazawa Y, Ohtsuka T, Ide H, Nio N, Motoki M, Kubota K. Epsilon-(gamma-glutamyl)-lysine: Hydrolysis by gamma-glutamyltransferase of different origins, when free or protein bound. J Agric Food Chem 1995;43:1977–1981.
148.
Obrador E, Carretero J, Ortega A, Medina I, Rodilla V, Pellicer JA, Estrela JM. Gamma-glutamyl transpeptidase overexpression increases metastatic growth of B16 melanoma cells in the mouse liver. Hepatology 2002;35:74–81.
149.
Hiramatsu K, Asaba Y, Takeshita S, Nimura Y, Tatsumi S, Katagiri N, Niida S, Nakajima T, Tanaka S, Ito M, Karsenty G, Ikeda K. Overexpression of gamma-glutamyltransferase in transgenic mice accelerates bone resorption and causes osteoporosis. Endocrinology 2007;148:2708–2715.
150.
Loewy AG, Blodgett JK, Blasé FR, May MH. Synthesis and use of a substrate for the detection of isopeptidase activity. Anal Biochem 1997;246:111–117.
151.
Balin BJ, Loewy AG, Appelt DM. Analysis of transglutaminase-catalyzed isopeptide bonds in paired helical filaments and neurofibrillary tangles from Alzheimer's disease. Methods Enzymol 1999;309:172–186.
152.
Reyes Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009;78:363–397.
153.
Lynnerup N, Kjeldsen H, Heegaard S, Jacobsen C, Heinemeier J. Radiocarbon dating of the human eye lens crystallines reveal proteins without carbon turnover throughout life. PLoS One 2008;3:e1529.
154.
Maroudas A, Palla G, Gilav E. Racemization of aspartic acid in human articular cartilage. Conn Tiss Res 1992;28:161–169.
155.
Verzijl N, DeGroot J, Thorpe SR, Bank RA, Shaw JN, Lyons TJ, Bijlsma JWJ, Lafeber FPJG, Baynes JW, TeKoppele JM. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 2000;275:39027–39031.
156.
Sivan SS, Tsitron E, Wachtel E, Roughley PJ, Sakkee N, van der Ham F, DeGroot J, Roberts S, Maroudas A. Aggrecan turnover in human intervertebral disc as determined by the racemization of aspartic acid. J Biol Chem 2006;281:13009–13014.
157.
Ritz-Timme S, Laumeier I, Collins MJ. Aspartic acid racemization: Evidence for marked longevity of elastin in human skin. Br J Dermatol 2003;149:951–959.
158.
Ritz S, Turzynski A, Schütz HW, Hollmann A, Rochholz G. Identification of osteocalcin as a permanent aging constituent of the bone matrix: Basis for an accurate age at death determination. Forensic Sci Int 1996;77:13–26.
159.
Kosky AA, Dharmavaram V, Ratnaswamy G, Manning MC. Multivariate analysis of the sequence dependence of asparagine deamidation rates in peptide. Pharmaceut Res 2009;26:2417–2428.
160.
Kossiakoff AA. Tertiary structure is a principal determinant to protein deamidation. Science 1988;240:191–194.
161.
Furber JD. Repairing extracellular aging and glycation. In: Fahy GM, ed. The Future of Aging, Springer: Dordrecht, Germany, 2010, pp. 587–621.
162.
Shringarpure R, Davies KJA. Protein turnover by the proteasome in aging and disease. Free Radic Biol Med 2002;32:1084–1089.
163.
Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M. The human lumbar intervertebral disc: Evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 1996;98:996–1003.
164.
Sivan S-S, Wachtel E, Tsitron E, Sakkee N, van der Ham F, DeGroot J, Roberts S, Maroudas A. Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid. J Biol Chem 2008;283:8796–8801.
165.
DeGroot J, Verzijl N, Jacobs KMG, Budde M, Bank RA, Bijlsma JWJ, TeKoppele J.M, Lafeber FPJG. Accumulation of advanced glycation endproducts reduces chondrocyte-mediated extracellular matrix turnover in human articular cartilage. Osteoerthritis Cartilage 2001;9:720–726.
166.
Babraj JA, Cuthbertson DJR, Smith K, Langberg H, Miller B, Krogsgaard MR, Kjaer M, Rennie MJ. Collagen synthesis in human musculoskeletal tissues and skin. Am J Physiol Endocrinol Metab 2005;289:E864–E869.
167.
Riley GP. Chronic tendon pathology: molecular basis and therapeutic implications. Exp Rev Mol Med 2005;7:1–25.
168.
Kjær M, Magnusson P, Krogsgaard M, Møller JB, Olesen J, Heinemeier K, Hansen M, Haraldsson B, Koskinen S, Esmarck B, Langberg H. Extracellular matrix adaptation of tendon and skeletal muscle to exercise. J Anat 2006;208:445–450.
169.
Akar U, Ozpolat B, Mehta K, Fok J, Kondo Y, Lopez-Berestein G. Tissue transglutaminase inhibits autophagy in pancreatic cancer cells. Mol Cancer Re 2007;5:241–249.
170.
Dalby KN, Tekedereli I, Lopez-Berestein G, Ozpolat B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy 2010;6:322–329.
171.
Butcher DT, Alliston T, Weaver VM. A tense situation: Forcing tumour progression. Nat Rev Cancer 2009;9:108–122.
172.
Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005;8:241–254.
173.
Lentini A, Abbruzzese A, Provenzano B, Tabolacci C, Beninati S. Transglutaminases: Key regulators of cancer metastasis. Amino Acids 2013;44:25–32.
174.
Mehta K, Kumar A, Kim HI. Transglutaminase 2: A multi-tasking protein in the complex circuitry of inflammation and cancer. Biochem Pharmacol 2010;80:1921–1929.
175.
Kim DY, Park BS, Hong GU, Lee BJ, Park JW, Kim SY, Ro JY. Anti-inflammatory effects of the R2 peptide, an inhibitor of transglutaminase 2, in a mouse model of allergic asthma, induced by ovalbumin. Br J Pharmacol 2011;162:210–225.
176.
Ientile R, Caccamo D, Griffin M. Tissue transglutaminase and the stress response. Amino Acids 2007;33:385–394.
177.
Lampasona V, Bonfanti R, Bazzigaluppi E, Venerando A, Chiumello G, Bosi E, Bonifacio E. Antibodies to tissue transglutaminase C in type I diabetes. Diabetologia 1999;42:1195–1198.
178.
Bao F, Yu L, Babu S, Wang T, Hoffenberg EJ, Rewers M, Eisenbarth GS. One third of HLA DQ2 homozygous patients with type 1 diabetes express celiac disease-associated transglutaminase autoantibodies. J Autoimmun 1999;13:143–148.
179.
Picarelli A, Di Tola M, Sabbatella L, Vetrano S, Anania MC, Spadaro A, Sorgi ML, Taccari E. Anti-tissue transglutaminase antibodies in arthritic patients: a disease-specific finding? Clin Chem 2003;49:2091–2094.
180.
Choi Y-C, Kim T-S, Kim S-Y. Increase in transglutaminase 2 in idiopathic inflammatory myopathies. Eur Neurol 2004;51:10–14.
181.
Macaione V, Aguennouz M, Mazzeo A, De Pasquale MG, Russo M, Toscano A, De Luca G, Di Giorgio RM, Vita G, Rodolico C. Expression of transglutaminase 2 does not differentiate focal myositis from generalized inflammatory myopathies. Acta Neurol Scand 2008;117:393–398.
182.
Gendek EG, Kędziora J, Gendek-Kubiak H. Can tissue transglutaminase be a marker of idiopathic inflammatory myopathies? Immunol Lett 2005;97:245–249.
183.
Huebner JL, Johnson KA, Kraus VB, Terkeltaub RA. Transglutaminase 2 is a marker of chondrocyte hypertrophy and osteoarthritis severity in the Hartley guinea pig model of knee OA. Osteoarthritis Cartilage 2009;17:1056–1064.
184.
Rosenthal AK, Gohr CM, Uzuki M, Masuda I. Osteopontin promotes pathologic mineralization in articular cartilage. Matrix Biol 2007;26:96–105.
185.
Hallstrand ES, Wurfel MM, Lai Y, Ni Z, Gelb MH, Altemeier WA, Beyer RP, Aitken ML, Henderson WRJ. Transglutaminase 2, a novel regulator of eicosanoid production in asthma revealed by genome-wide expression profiling of distinct asthma phenotypes. PLoS One 2010;5:e8583.
186.
Arjomandi M, Frelinger J, Donde A, Wong H, Yellamilli A, Raymond W. Secreted osteopontin is highly polymerized in human airways and fragmented in asthmatic airway secretions. PLoS One 2011;6:e25678.
187.
Roberts CR. Is asthma a fibrotic disease? Chest 1995;107(Suppl3):111S–117S.
188.
Esmann J., Voorhees JJ, Fisher GJ. Increased membrane-associated transglutaminase activity in psoriasis. Biochem Biophys Res Commun 1989;164:219–224.
189.
Widgerow AD. Current concepts in scar evolution and control. Aesth Plast Surg 2011;35:628–635.
190.
Wilgus TA, Bergdall VK, Tober KL, Hill KJ, Mitra S, Flavahan NA, Oberyszyn TM. The impact of cyclooxygenase-2 mediated inflammation on scarless fetal wound healing. Am J Pathol 2004;165:753–761.
191.
Shin D-M, Jeon J-H, Kim C-W, Cho S-Y, Lee H-J, Jang G-Y, Jeong EM, Lee D-S, Kang J-H, Melino G, Park S-C, Kim I-G. TGFβ mediates activation of transglutaminase 2 in response to oxidative stress that leads to protein aggregation. FASEB J 2008;22:2498–2507.
192.
Shin D-M, Jeon J-H, Kim C-W, Cho S-Y, Kwon J-C, Lee H-J, Choi K-H, Park S-C, Kim I-G. Cell Type-specific activation of intracellular transglutaminase 2 by oxidative stress or ultraviolet irradiation. J Biol Chem 2004;279:15032–15039.
193.
Sohn J, Chae JB, Lee SY, Kim S-Y, Kim J-G. A novel therapeutic target in inflammatory uveitis: transglutaminase 2 inhibitor. Korean J Ophthamol 2010;24:29–34.
194.
Sohn J, Kim S-Y. Peptide with the amino acid sequence of KVLDGQDP having anti-inflammatory properties, US Patent Office 2006, US Patent 7,037,502.
195.
Bowness JM, Tarr AH. Increase in transglutaminase and its extracellular products in response to an inflammatory stimulus by lipopolysaccharide. Mol Cell Biochem 1997;169:157–163.
196.
Yoo H, Ahn E-R, Kim S-J, Lee S-H, Oh S, Kim S-Y. Divergent results induced by different types of septic shock in transglutaminase 2 knockout mice. Amino Acids 2013;44:189–197.
197.
Dafik L, Albertelli M, Stamnaes J, Sollid LM, Khosla C. Activation and inhibition of transglutaminase 2 in mice. PLoS One 2012;7:e30642.
198.
Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, Schuppan D. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 1997;3:797–801.
199.
Iacono OL, Petta S, Venezia G, Di Marco V, Tarantino G, Barbaria F, Mineo C, De Lisi S, Almasio PL, Craxi A. Anti-tissue transglutaminase antibodies in patients with abnormal liver tests: Is it always coeliac disease? Am J Gastroenterol 2005;100:2472–2477.
200.
Bonamico M, Ferri M, Nenna R, Verrienti A, Di Mario U, Tiberti C. Tissue transglutaminase autoantibody detection in human saliva: A powerful method for celiac disease screening. J Pediatr 2004;144:632–636.
201.
Bonamico M, Tiberti C, Picarelli A, Mariani P, Rossi D, Cipolletta E, Greco M, Di Tola M, Sabbatella L, Carabba B, Magliocca FM, Strisciuglio P, Di Mario U. Radioimmunoassay to detect antitransglutaminase autoantibodies is the most sensitive and specific screening method for celiac disease. Am J Gastroenterol 2001;96:1536–1540.
202.
Sulkanen S, Halttunen T, Laurila K, Kolho K-L, Korponay-Szabó IR, Sarnesto A, Savilahti E, Collin P, Mäki M. Tissue transglutaminase autoantibody enzyme-linked immunosorbent assay in detecting celiac disease. Gastroenterology 1998;115:1322–1328.
203.
Biagi F, Ellis HJ, Yiannakou JY, Brusco G, Swift GL, Smith PM, Corazza GR, Ciclitira PJ. Tissue transglutaminase antibodies in celiac disease. Am J Gastroenterol 1999;94:2187–2192.
204.
Teesalu K, Panarina M, Uibo O, Uibo R, Utt M.Autoantibodies from patients with celiac disease inhibit transglutaminase 2 binding to heparin/heparan sulfate and interfere with intestinal epithelial cell adhesion. Amino Acids 2012;42:1055–1064.
205.
Sánchez D, Tučková L, Šebo P, Michalak M, Whelan A, Šterzl I, Jelínková L, Havrdová E, Imramovská M, Beneš Z, Krupičková S, Tlaskalová-Hogenová H. Occurrence of IgA and IgG autoantibodies to calreticulin in coeliac disease and various autoimmune diseases. J Autoimmun 2000;15:441–449.
206.
Baldas V, Not T, Tommasini A, Ansaldi F, Demarini S, Sblattero D, Marzari R, Torelli L, Burlina A, Tiribelli C, Ventura A. Anti-transglutaminase antibodies and age. Clin Chem 2004;50:1856–1860.
207.
Rosenthal AK, Gohr CM, Mitton EM, Monnier V, Burner T. Advanced glycation end products increase transglutaminase activity in primary porcine tenocytes. J Invest Med 2009;57:460–466.
208.
Skill NJ, Johnson TS, Coutts IGC, Saint RE, Fisher M, Huang L, El Nahas AM, Collighan RJ, Griffin M. Inhibition of transglutaminase activity reduces extracellular matrix accumulation induced by high glucose levels in proximal tubular epithelial cells. J Biol Chem 2004;279:47754–47762.
209.
Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert PM, Chen J, Hong M, Luther T, Henle T, Klöting I, Morcos M, Hofmann M, Tritschler H, Weigle B, Kasper M, Smith M, Perry G, Schmidt AM, Stern DM, Häring HU, Schleicher E, Nawroth PP. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 2001;50:2792–2808.
210.
Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier J.L.Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 2001;280:E685–E694.
211.
Verzijl N, DeGroot J, Zaken CB, Braun-Benjamin O, Maroudas A, Bank RA, Mizrahi J, Schalkwijk CG, Thorpe SR, Baynes JW, Bijlsma JWJ, Lafeber FPJG, TeKoppele JM. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: A possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum 2002;46:114–123.
212.
Sell DR, Biemel KM, Reihl O, Lederer MO, Strauch CM, Monnier VM. Glucosepane is a major protein cross-link of the senescent human extracellular matrix. J Biol Chem 2005;280:12310–12316.
213.
Aspinall R, Mitchell WA. Maintenance and restoration of immune system function. In: Fahy GM et al., eds. The Future of Aging. Springer, Dordrecht, Germany, 2010, pp. 489–520.
214.
Niwa Y, Kasama T, Miyachi Y, Kanoh T. Neutrophil chemotaxis, phagocytosis and parameters of reactive oxygen species in human aging: Cross-sectional and longitudinal studies. Life Sci 1989;44:1655–1664.
215.
Ginaldi L, Martinis MD, D'Ostilio A, Marini L, Loreto MF, Quaglino D. The immune system in the elderly. Immunol Res 1999;20:117–126.
216.
Diegelmann RF, Evans MC. Wound healing: An overview of acite, fibrotic and delayed healing. Front Biosci 2004;9:283–289.
217.
White ES, Mantovani AR. Inflammation, wound repair, and fibrosis: Reassessing the spectrum of tissue injury and resolution. J Pathol 2013;229:141–144.
218.
Nardacci R, Lo Iacono O, Ciccosanti F, Falasca L, Addesso M, Amendola A, Antonucci G, Craxì A, Fimia GM, Iadevaia V, Melino G, Ruco L, Tocci G, Ippolito G, Piacentini M, Transglutaminase type II plays a protective role in hepatic injury. Am J Pathol 2003;162:1293–1303.
219.
Strnad P, Harada M, Siegel M, Terkeltaub RA, Graham RM, Khosla C, Omary MB. Transglutaminase 2 regulates Mallory body inclusion formation and injury-associated liver enlargement. Gastroenterology 2007;132:1515–1526.
220.
Grenard P, Bresson-Hadni S, El Alaoui S, Chevallier M, Vuitton DA, Ricard-Blum S. Transglutaminase-mediated cross-linking is involved in the stabilization of extracellular matrix in human liver fibrosis. J Hepatol 2001;35:367–375.
221.
Tatsukawa H, Fukaya Y, Frampton G, Martinez–Fuentes A, Suzuki K, Kuo TF, Nagatsuma K, Shimokado K, Okuno M, Wu J, Iismaa S, Matsuura T, Tsukamoto H, Zern MA, Graham RM, Kojima S. Role of transglutaminase 2 in liver injury via cross-linking and silencing of transcription factor Sp1. Gastroenterology 2009;136:1783–1795.e10.
222.
Skill NJ, Griffin M, El Nahas AM, Sanai T, Haylor JL, Fisher M, Jamie MF, Mould NN, Johnson TS. Increases in renal epsilon-(gamma-glutamyl)-lysine crosslinks result from compartment-specific changes in tissue transglutaminase in early experimental diabetic nephropathy: pathologic implications. Lab Invest 2001;81:705–716.
223.
Huang L, Haylor JL, Hau Z, Jones RA, Vickers ME, Wagner B, Griffin M, Saint RE, Coutts IGC, El Nahas AM, Johnson TS. Transglutaminase inhibition ameliorates experimental diabetic nephropathy. Kidney Int 2009;76:383–394.
224.
Johnson TS, Fisher M, Haylor JL, Hau Z, Skill NJ, Jones R, Saint R, Coutts I, Vickers ME, El Nahas AM, Griffin M. Transglutaminase inhibition reduces fibrosis and preserves function in experimental chronic kidney disease. J Am Soc Nephrol 2007;18:3078–3088.
225.
Olsen KC, Sapinoro RE, Kottmann RM, Kulkarni AA, Iismaa SE, Johnson GVW, Thatcher TH, Phipps RP, Sime PJ. Transglutaminase 2 and its role in pulmonary fibrosis. Am J Resp Crit Care Med 2011;184:699–707.
226.
Kim D-S, Kim B, Tahk H, Kim D-H, Ahn E-R, Choi C, Jeon Y, Park SY, Lee H, Oh SH, Kim S-Y. Transglutaminase 2 gene ablation protects against renal ischemic injury by blocking constant NF-κB activation. Biochem Biophys Res Commun 2010;403:479–484.
227.
Oliva F, Barisani D, Grasso A, Maffulli N. Gene expression analysis in calcific tendinopathy of the rotator cuff. Eur Cells Mater 2011;21:548–557.
228.
Oliva F, Zocchi L, Codispoti A, Candi E, Celi M, Melino G, Maffulli N, Tarantino U. Transglutaminases expression in human supraspinatus tendon ruptures and in mouse tendons. Biochem Biophys Res Commun 2009;379:887–891.
229.
Lorand L, Hsu LK, Siefring GE, Rafferty NS. Lens transglutaminase and cataract formation. Proc Natl Acad Sci 1981;78:1356–1360.
230.
Wan XH, Lee EH, Koh HJ, Song J, Kim EK, Kim CY, Lee JB, Kim S.-Y., Yao K., Lee J.H., Enhanced expression of transglutaminase 2 in anterior polar cataracts and its induction by TGF-β in vitro. Br J Ophthalmol 2002;86:1293–1298.
231.
Sane DC, Kontos JL, Greenberg CS. Roles of transglutaminases in cardiac and vascular diseases. Front Biosci 2007;12:2530–2545.
232.
Cho B-R, Kim M-K, Suh D-H, Hahn J-H, Lee B-G, Choi Y-C, Kwon T-J, Kim S-Y, Kim D-J. Increased tissue transglutaminase expression in human atherosclerotic coronary arteries. Coron Artery Dis 2008;19:459–468.
233.
Bowness JM, Venditti M, Tarr AH, Taylor JR. Increase in ε(γ-glutamyl)-lysine crosslinks in atherosclerotic aortas. Atherosclerosis 1994;111:247–253.
234.
Chabot N, Moreau S, Mulani A, Moreau P, Keillor JW. Fluorescent probes of tissue transglutaminase reveal its association with arterial stiffening. Chem Biol 2010:17:1143–1150.
235.
van den Akker J, VanBavel E, van Geel R, Matlung HL, Guvenc Tuna B, Janssen GMC, van Veelen PA, Boelens WC, De Mey JGR, Bakker ENTP. The redox state of transglutaminase 2 controls arterial remodeling. PLoS One 2011;6:e23067.
236.
Haroon ZA, Wannenburg T, Gupta M, Greenberg CS, Wallin R, Sane DC. Localization of tissue transglutaminase in human carotid and coronary artery atherosclerosis: Implications for plaque stability and progression. Lab Invest 2001;81:83–93.
237.
Matlung HL, Groen HC, de Vos J, van Walsum T, van der Lugt A, Niessen WJ, Wentzsel JJ, van Bavel E, Bakker ENTP. Calcification locates to transglutaminases in advanced human atherosclerotic lesions. Am J Pathol 2009;175:1374–1379.
238.
Williams H, Pease RJ, Newell LM, Cordell PA, Graham RM, Kearney MT, Jackson CL, Grant PJ. Effect of transglutaminase 2 (TG2) deficiency on atherosclerotic plaque stability in the apolipoprotein E deficient mouse. Atherosclerosis 2010;210:94–99.
239.
Matlung H, VanBavel E, van den Akker J, de Vries CJM, Bakker ENTP. Role of transglutaminases in cuff-induced atherosclerotic lesion formation in femoral arteries of ApoE3 Leiden mice. Atherosclerosis 2010;213:77–84.
240.
Zhang Z, Vezza R, Plappert T, McNamara P, Lawson JA, Austin S, Praticò D, Sutton MS-J, FitzGerald GA. COX-2–dependent cardiac failure in Gh/tTG transgenic mice. Circ Res 2003;92:1153–1161.
241.
Iismaa SE, Graham RM. Dissecting cardiac hypertrophy and signaling pathways: Evidence for an interaction between multifunctional G proteins and prostanoids. Circ Res 2003;92:1059–1061.
242.
Hwang K-C, Gray CD, Sweet WE, Moravec CS, Im M-J. α1-Adrenergic receptor coupling with Gh in the failing human heart. Circulation 1996;94:718–726.
243.
Gorza L, Menabò R, Vitadello M, Bergamini CM, Di Lisa F. Cardiomyocyte troponin T immunoreactivity is modified by cross-linking resulting from intracellular calcium overload. Circulation 1996;93:1896–1904.
244.
Battaglia G, Farrace MG, Mastroberardino PG, Viti I, Fimia GM, Van Beeumen J, Devreese B, Melino G, Molinaro G, Busceti CL, Biagioni F, Nicoletti F, Piacentini M. Transglutaminase 2 ablation leads to defective function of mitochondrial respiratory complex I affecting neuronal vulnerability in experimental models of extrapyramidal disorders. J Neurochem 2007;100:36–49.
245.
Mauro P, Grazia Farrace M, Piredda L, Matarrese P, Ciccosanti F, Falasca L, Rodolfo C, Giammarioli AM, Verderio E, Griffin M, Malorni W. Transglutaminase overexpression sensitizes neuronal cell lines to apoptosis by increasing mitochondrial membrane potential and cellular oxidative stress. J Neurochem 2002;81:1061–1072.
246.
Mastroberardino PG, Farrace MG, Viti I, Pavone F, Fimia GM, Melino G, Rodolfo C, Piacentini M. “Tissue” transglutaminase contributes to the formation of disulphide bridges in proteins of mitochondrial respiratory complexes. Biochim Biophys Acta Bioenergetics 2006;1757:1357–1365.
247.
Nemes Z, Fésüs L, Egerházi A, Keszthelyi A, Degrell IM. N(epsilon)(gamma-glutamyl)-lysine in cerebrospinal fluid marks Alzheimer type and vascular dementia. Neurobiol Aging 2001;22:403–406.
248.
Johnson GVW, Cox TM, Lockhart JP, Zinnerman MD, Miller ML, Powers RE. Transglutaminase activity is increased in Alzheimer's disease brain. Brain Res 1997;751:323–329.
249.
Grosso H, Mouradian MM. Transglutaminase 2: Biology, relevance to neurodegenerative diseases and therapeutic implications. Pharmacol Therapeut 2012;133:392–410.
250.
Sárvári M, Fésüs L, Nemes Z. Transglutaminase-mediated crosslinking of neural proteins in Alzheimer's disease and other primary dementias. Drug Dev Res 2002;56:458–472.
251.
Bonelli RM, Aschoff A, Niederwieser G, Heuberger C, Jirikowski G. Cerebrospinal fluid tissue transglutaminase as a biochemical marker for alzheimer's disease. Neurobiol Dis 2002;11:106–110.
252.
Bonelli RM, Aschoff A, Jirikowski G. Cerebrospinal fluid tissue transglutaminase in vascular dementia. J Neurol Sci 2002;203-4:207–209.
253.
Dedeoglu A, Kubilus JK, Jeitner TM, Matson SA, Bogdanov M, Kowall NW, Matson WR, Cooper AJL, Ratan RR, Beal MF, Hersch SM, Ferrante RJ. Therapeutic effects of cystamine in a murine model of huntington's disease. J Neurosci 2002;22:8942–8950.
254.
Bailey CDC, Johnson GVW. The protective effects of cystamine in the R6/2 Huntington's disease mouse involve mechanisms other than the inhibition of tissue transglutaminase. Neurobiol Aging 2006;27:871–879.
255.
Lesort M, Chun W, Johnson GVW, Ferrante RJ. Tissue transglutaminase is increased in Huntington's disease brain. J Neurochem 1999;73:2018–2027.
256.
Cooper AJL, Jeitner TM, Gentile V, Blass JP. Cross linking of polyglutamine domains catalyzed by tissue transglutaminase is greatly favored with pathological-length repeats: Does transglutaminase activity play a role in (CAG)n/Qn-expansion diseases? Neurochem Int 2002;40:53–67.
257.
Fujita K, Honda M, Hayashi R, Ogawa K, Ando M, Yamauchi M, Nagata Y. Transglutaminase activity in serum and cerebrospinal fluid in sporadic amyotrophic lateral sclerosis: A possible use as an indicator of extent of the motor neuron loss. J Neurol Sci 1998;158:53–57.
258.
Fesus L. Transglutaminase-catalyzed protein cross-linking in the molecular program of apoptosis and its relationship to neuronal processes. Cell Mol Neurobiol 1998;18:683–694.
259.
Hartley DM, Zhao C, Speier AC, Woodard GA, Li S, Li Z, Walz T. Transglutaminase induces protofibril-like amyloid beta-protein assemblies that are protease-resistant and inhibit long-term potentiation. J Biol Chem 2008;283:16790–16800.
260.
Norlund MA, Lee JM, Zainelli GM, Muma NA. Elevated transglutaminase-induced bonds in PHF tau in Alzheimer's disease. Brain Res 1999;851:154–163.
261.
Muna NA. Transglutaminase is linked to neurodegenerative diseases. J Neuropathol Exp Neurol 2007;66:258–263.
262.
Evans J. Skin elasticity may serve as potential biomarker for sclerosis. In: Skin and Allergy News (http://www.skinandallergynews.com/) July 2009. IMNG Medical Media Group LLC, Rockville, MD, 2009.
263.
Arbesman H. In Vivo Measurement of the elastic properties of the skin as a biomarker for amyotrophic lateral sclerosis. American Academy of Neurology Annual Meeting, Seattle, WA, 2009.
264.
Dominguez C, Wityak J, Prime M, Courtney S, Yarnold C, Brookfield F, Marston R. Transglutaminase TG2 inhibitors, pharmaceutical compositions and methods of use thereof. US patent application PCT/US2010/056614, assigned to CHDI Foundation, Inc., (NY), 2010.
265.
Prime M, Andersen OA, Barker JJ, Brooks MA, Checng RKY, Toogood-Johnson I, Courtney SM, Brookfield FA, Yarnold CJ, Marston RW, Johnson PD HJohnsen SF, Palfrey JJ, Vaidya D, Erfan S, Ichihara O, Felicetti B, Palan S, Pedret-Dunn A, Schaertl S, Sternberger I, Ebneth A, Scheel A, Winkler D, Toledo-Sherman L, Beconi M, MacDonald D, Munoz-Sanjuan I, Dominguez C, Wityak J. Discovery and structure—activity relationship of potent and selective covalent inhibitors of transglutaminase 2 for Huntington's disease. J Med Chem 2012;55:1021–1046.
266.
Schaertl S, Prime M, Wityak J, Dominguez C, Munoz-Sanjuan I, Pacifici RE, Courtney S, Scheel A, MacDonald D. A profiling platform for the characterization of transglutaminase 2 (TG2) inhibitor. J Biomol Screen 2010;15:478–487.
267.
Pedersen LC, Yee VC, Bishop PD, Le Trong I, Teller DC, Stenkamp RE, Transglutaminase factor XIII uses proteinase-like catalytic triad to crosslink macromolecules. Protein Sci 1994;3:1131–1135.
268.
Chica RA, Gagnon P, Keillor JW, Pelletier JN. Tissue transglutaminase acylation: Proposed role of conserved active site Tyr and Trp residues revealed by molecular modeling of peptide substrate binding. Protein Sci 2004;13:979–991.
269.
Hausch F, Halttunen T, Mäki M, Khosla C. Design, synthesis, and evaluation of gluten peptide analogs as selective inhibitors of human tissue transglutaminase. Chem Biol 2003;10:225–231.
270.
Wityak J, Prime ME, Brookfield FA, Courtney SM, Erfan S, Johnsen S, Johnson PD, Li M, Marston RW, Reed L, Vaidya D, Schaertl S, Pedret-Dunn A, Beconi M, Macdonald D, Muñoz-Sanjuan I, Dominguez C. SAR development of lysine-based irreversible inhibitors of transglutaminase 2 for Huntington's disease. ACS Med Chem Lett 2012;3:1024–1028.
271.
Prime ME, Brookfield FA, Courtney SM, Gaines S, Marston RW, Ichihara O, Li M, Vaidya D, Williams H, Pedret-Dunn A, Reed L, Schaertl S, Toledo-Sherman L, Beconi M, Macdonald D, Muñoz-Sanjuan I, Dominguez C, Wityak J. Irreversible 4-aminopiperidine transglutaminase 2 inhibitors for Huntington's disease. ACS Med Chem Lett 2012;3:731–735.
272.
Lai T-S, Liu Y, Tucker T, Daniel KR, Sane DC, Toone E, Burke JR, Strittmatter WJ, Greenberg CS. Identification of chemical inhibitors to human tissue transglutaminase by screening existing drug libraries. Chem Biol 2008;15:969–978.
273.
Datta S, Antonyak MA, Cerione RA. GTP-binding-defective forms of tissue transglutaminase trigger cell death. Biochemistry 2007;46:14819–14829.
274.
Noble MEM, Endicott JA, Johnson LN. Protein kinase inhibitors: Insights into drug design from structure. Science 2004;303:1800–1805.
275.
Fabbro D, Ruetz S, Buchdunger E, Cowan-Jacob SW, Fendrich G, Liebetanz J, Mestan J, O'Reilly T, Traxler P, Chaudhuri B, Fretz H, Zimmermann J, Meyer T, Caravatti G, Furet P, Manley PW. Protein kinases as targets for anticancer agents: From inhibitors to useful drugs. Pharmacol Therapeut 2002;93:79–98.
276.
Hart M, Maru Y, Leonard D, Witte O, Evans T, Cerione R. A GDP dissociation inhibitor that serves as a GTPase inhibitor for the Ras-like protein CDC42Hs. Science 1992;258:812–815.
277.
Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 2004;101:7618–7623.
278.
Schelling JR. Tissue transglutaminase inhibition as treatment for diabetic glomerular scarrings: It's good to be glueless. Kidney Int 2009;76:363–365.
279.
Cordella-Miele E, Miele L, Beninati S, Mukherjee AB. Transglutaminase-catalyzed incorporation of polyamines into phospholipase A2. J Biochem 1993;113:164–173.
280.
Sohn J, Kim TI, Yoon YH, Kim JY, Kim SY. Novel transglutaminase inhibitors reverse the inflammation of allergic conjunctivitis. J Clin Invest 2003;111:121–128.
281.
Cordella-Miele E, Miele L, Mukherjee AB. A novel transglutaminase-mediated post-translational modification of phospholipase A2 dramatically increases its catalytic activity. J Biol Chem 1990;265:17180–17188.
282.
Hardas B, Dolynchuk K, Jacob C, Griffin M, Panchal C. Reversal of ε-(γ-glutamyl)-lysine cross-linking and down-regulation of fibronectin and tissue transglutaminase (tTGase) activity in hypertrophic scars following treatment with 0.8% 1,4 DAB 2HCL. Wound Repair Regeneration 2004;12:A19.
283.
Furber JD. Extracellular glycation crosslinks: Prospects for removal. Rejuvenation Res 2006;9:274–278.
284.
Simpson RM, Christeller JT. Identification of isopeptidase activity in the midgut of insects: Purification, properties and nutritional ecology of a Hofmannophila pseudospretella (Lepidoptera: Oecophoridae) larval enzyme. Insect Sci 2010;17:325–334.
285.
Saber-Lichtenberg Y, Brix K, Schmitz A, Heuser JE, Wilson JH, Lorand L, Herzog V. Covalent cross-linking of secreted bovine thyroglobulin by transglutaminase. FASEB J 2000;14:1005–1014.
286.
Giraud A, Dicristofaro J, De Micco C, Lejeune P-J, Barbaria J, Mallet B. A plasminogen-like protein, present in the apical extracellular environment of thyroid epithelial cells, degrades thyroglobulin in vitro. Biochem Biophys Res Commun 2005;338:1000–1004.
287.
Tepel C, Bromme D, Herzog V, Brix K, Cathepsin K in thyroid epithelial cells: Sequence, localization and possible function in extracellular proteolysis of thyroglobulin. J Cell Sci 2000;113:4487–4498.
288.
Oakley AJ, Coggan M, Board PG. Identification and characterization of γ-glutamylamine cyclotransferase, an enzyme responsible for γ-glutamyl-ε-lysine catabolism. J Biol Chem 2010;285:9642–9648.
289.
de Grey ADNJ. The desperate need for a biomedically useful definition of ‘‘aging.’’ Rejuvenation Res 2013;16:89–90.
290.
Bains W. Can I have volunteers to die tomorrow? Rejuvenation Res 2007;10:648–650.
291.
Hurst LC, Badalamente MA, Hentz VR, Hotchkiss RN, Kaplan FTD, Meals RA, Smith TM, Rodzvilla J. Injectable collagenase clostridium histolyticum for Dupuytren's contracture. N Engl J Med 2009;361:968–979.
292.
Gilpin D, Coleman S, Hall S, Houston A, Karrasch J, Jones N. Injectable collagenase clostridium histolyticum: A new nonsurgical treatment for dupuytren's disease. J Hand Surg 2010;35:2027–2038.e1.
Information & Authors
Information
Published In

Copyright
Copyright 2013, Mary Ann Liebert, Inc.
History
Published online: 16 December 2013
Published in print: December 2013
Published ahead of production: 22 August 2013
Accepted: 22 August 2013
Received: 10 June 2013
Topics
Authors
Author Disclosure Statement
The author admits to having had surgery for Dupuytren contracture and physiotherapy for “frozen shoulder” after a dislocation, and to be personally interested in a better way of treating both. However, he has no financial interest in the subject of this article.
Metrics & Citations
Metrics
Citations
Export Citation
Export citation
Select the format you want to export the citations of this publication.
View Options
Access content
To read the fulltext, please use one of the options below to sign in or purchase access.⚠ Society Access
If you are a member of a society that has access to this content please log in via your society website and then return to this publication.