Flexible and Stretchable Electronics Paving the Way for Soft Robotics
Abstract
Planar and rigid wafer-based electronics are intrinsically incompatible with curvilinear and deformable organisms. Recent development of organic and inorganic flexible and stretchable electronics enabled sensing, stimulation, and actuation of/for soft biological and artificial entities. This review summarizes the enabling technologies of soft sensors and actuators, as well as power sources based on flexible and stretchable electronics. Examples include artificial electronic skins, wearable biosensors and stimulators, electronics-enabled programmable soft actuators, and mechanically compliant power sources. Their potential applications in soft robotics are illustrated in the framework of a five-step human–robot interaction loop. Outlooks of future directions and challenges are provided at the end.
Get full access to this article
View all available purchase options and get full access to this article.
References
1.
Garnier F, Hajlaoui R, Yassar A, Srivastava P. All-polymer field-effect transistor realized by printing techniques. Science 1994;265:1684–1686.
2.
Bao ZN, Feng Y, Dodabalapur A, Raju VR, Lovinger AJ. High-performance plastic transistors fabricated by printing techniques. Chem Mater 1997;9:1299–1301.
3.
Reuss RH, Chalamala BR, Moussessian A, Kane MG, Kumar A, Zhang DC, et al. Macroelectronics: perspectives on technology and applications. Proc IEEE 2005;93:1239–1256.
4.
Rogers JA, Bao Z, Baldwin K, Dodabalapur A, Crone B, Raju VR, et al. Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci USA 2001;98:4835–4840.
5.
Gelinck GH, Huitema HEA, Van Veenendaal E, Cantatore E, Schrijnemakers L, Van der Putten JBPH, et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater 2004;3:106–110.
6.
Dimitrakopoulos CD, Malenfant PRL. Organic thin film transistors for large area electronics. Adv Mater 2002;14:99–117.
7.
Forrest SR. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004;428:911–918.
8.
Menard E, Meitl MA, Sun YG, Park JU, Shir DJL, Nam YS, et al. Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem Rev 2007;107:1117–1160.
9.
Forrest SR, Thompson ME. Introduction: organic electronics and optoelectronics. Chem Rev 2007;107:923–925.
10.
Someya T, Sekitani T, Iba S, Kato Y, Kawaguchi H, Sakurai T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci USA 2004;101:9966–9970.
11.
Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T. A rubberlike stretchable active matrix using elastic conductors. Science 2008;321:1468–1472.
12.
Lipomi DJ, Tee BCK, Vosgueritchian M, Bao ZN. Stretchable organic solar cells. Adv Mater 2011;23:1771–1775.
13.
Kaltenbrunner M, White MS, Glowacki ED, Sekitani T, Someya T, Sariciftci NS, Bauer S. Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun 2012;3:770.
14.
Service RF. Materials science—inorganic electronics begin to flex their muscle. Science 2006;312:1593–1594.
15.
Sun YG, Rogers JA. Inorganic semiconductors for flexible electronics. Adv Mater 2007;19:1897–1916.
16.
Hsu PI, Gleskova H, Huang M, Suo Z, Wagner S, Sturm JC. Amorphous Si TFTs on plastically deformed spherical domes. J Noncrystalline Solids 2002;299:1355–1359.
17.
Lacour SP, Wagner S, Huang ZY, Suo Z. Stretchable gold conductors on elastomeric substrates. Appl Phy Lett 2003;82:2404–2406.
18.
Li T, Suo ZG, Lacour SP, Wagner S. Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J Mater Res 2005;20:3274–3277.
19.
Lu NS, Wang X, Suo Z, Vlassak J. Metal films on polymer substrates stretched beyond 50%. Appl Phys Lett 2007;91:221909.
20.
Khang DY, Jiang HQ, Huang Y, Rogers JA. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006;311:208–212.
21.
Sun YG, Choi WM, Jiang HQ, Huang YGY, Rogers JA. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat Nanotechnol 2006;1:201–207.
22.
Kim DH, Ahn JH, Choi WM, Kim HS, Kim TH, Song JZ, et al. Stretchable and foldable silicon integrated circuits. Science 2008;320:507–511.
23.
Kim DH, Song JZ, Choi WM, Kim HS, Kim RH, Liu ZJ, et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci USA 2008;105:18675–18680.
24.
Ko HC, Stoykovich MP, Song JZ, Malyarchuk V, Choi WM, Yu CJ, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008;454:748–753.
25.
Lee J, Wu JA, Shi MX, Yoon J, Park SI, Li M, et al. Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv Mater 2011;23:986–991.
26.
Kim DH, Lu NS, Ghaffari R, Kim YS, Lee SP, Xu LZ, et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat Mater 2011;10:316–323.
27.
Kim DH, Lu NS, Ma R, Kim YS, Kim RH, Wang SD, et al. Epidermal electronics. Science 2011;333:838–843.
28.
Xu S, Zhang YH, Cho J, Lee J, Huang X, Jia L, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun 2013;4:1543.
29.
Sun JY, Lu NS, Yoon J, Oh KH, Suo ZG, Vlassak JJ. Inorganic islands on a highly stretchable polyimide substrate. J Mater Res 2009;24:3338–3342.
30.
Kim DH, Kim YS, Wu J, Liu ZJ, Song JZ, Kim HS, et al. Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Adv Mater 2009;21:3703–3709.
31.
Meitl MA, Zhu ZT, Kumar V, Lee KJ, Feng X, Huang YY, et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater 2006;5:33–38.
32.
Kim S, Wu JA, Carlson A, Jin SH, Kovalsky A, Glass P, et al. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc Natl Acad Sci USA 2010;107:17095–17100.
33.
Yoon J, Jo S, Chun IS, Jung I, Kim HS, Meitl M, et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 2010;465:329–333.
34.
Kim DH, Choi WM, Ahn JH, Kim HS, Song JZ, Huang YG, et al. Complementary metal oxide silicon integrated circuits incorporating monolithically integrated stretchable wavy interconnects. Appl Phys Lett 2008;93:044102.
35.
Park SI, Xiong YJ, Kim RH, Elvikis P, Meitl M, Kim DH, et al. Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays. Science 2009;325:977–981.
36.
Yoon J, Baca AJ, Park SI, Elvikis P, Geddes JB, Li LF, et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat Mater 2008;7:907–915.
37.
Song YM, Xie Y, Malyarchuk V, Xiao J, Jung I, Choi KJ, et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013;497:95–99.
38.
Rogers JA, Someya T, Huang YG. Materials and mechanics for stretchable electronics. Science 2010;327:1603–1607.
39.
Huang X, Yeo WH, Liu YH, Rogers JA. Epidermal Differential Impedance Sensor for Conformal Skin Hydration Monitoring. Biointerphases 2012;7:1–9.
40.
Yeo W-H, Kim Y-S, Lee J, Ameen A, Shi L, Li M, et al. Multi-functional electronics: multifunctional epidermal electronics printed directly onto the skin. Adv Mater 2013;25:2772–2772.
41.
Kim DH, Viventi J, Amsden JJ, Xiao JL, Vigeland L, Kim YS, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 2010;9:511–517.
42.
Viventi J, Kim DH, Vigeland L, Frechette ES, Blanco JA, Kim YS, et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 2011;14:1599–1605.
43.
Kim DH, Ghaffari R, Lu NS, Wang SD, Lee SP, Keum H, et al. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc Natl Acad Sci USA 2012;109:19910–19915.
44.
Viventi J, Kim DH, Moss JD, Kim YS, Blanco JA, Annetta N, et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med 2010;2:24ra22.
45.
Kim DH, Wang SD, Keum H, Ghaffari R, Kim YS, Tao H, et al. Thin, flexible sensors and actuators as “instrumented” surgical sutures for targeted wound monitoring and therapy. Small 2012;8:3263–3268.
46.
Kim DH, Lu NS, Ghaffari R, Rogers JA. Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics. NPG Asia Mater 2012;4:e15.
47.
Kim DH, Lu NS, Huang YG, Rogers JA. Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bull 2012;37:226–235.
48.
Kim DH, Ghaffari R, Lu NS, Rogers JA. Flexible and stretchable electronics for bio-integrated devices. Annu Rev Biomed Eng 2012;14:113–128.
49.
Kim S, Laschi C, Trimmer B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 2013;31:23–30.
50.
Pfeifer R, Lungarella M, Iida F. The challenges ahead for bio-inspired “soft” robotics. Commun ACM 2012;55:76–87.
51.
Dellon ES, Mourey R, Dellon AL. Human pressure perception values for constant and moving one-point and 2-point discrimination. Plast Reconstr Surg 1992;90:112–117.
52.
Someya T, Kato Y, Sekitani T, Iba S, Noguchi Y, Murase Y, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA 2005;102:12321–12325.
53.
Arumugam V, Naresh MD, Sanjeevi R. Effect of strain-rate on the fracture-behavior of skin. J Biosci 1994;19:307–313.
54.
Takei K, Takahashi T, Ho JC, Ko H, Gillies AG, Leu PW, et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater 2010;9:821–826.
55.
Hussain M, Choa YH, Niihara K. Conductive rubber materials for pressure sensors. J Mater Sci Lett 2001;20:525–527.
56.
Mannsfeld SCB, Tee BCK, Stoltenberg RM, Chen CVHH, Barman S, Muir BVO, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 2010;9:859–864.
57.
Pang C, Lee GY, Kim TI, Kim SM, Kim HN, Ahn SH, Suh KY. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 2012;11:795–801.
58.
Wu W, Wen X, Wang ZL. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 2013;340:952–957.
59.
Kato Y, Sekitani T, Takamiya M, Doi M, Asaka K, Sakurai T, Someya T. Sheet-type Braille displays by integrating organic field-effect transistors and polymeric actuators. IEEE Trans Electron Devices 2007;54:202–209.
60.
Koo IM, Jung K, Koo JC, Nam JD, Lee YK, Choi HR. Development of soft-actuator-based wearable tactile display. IEEE Trans Robot 2008;24:549–558.
61.
Zhang QM, Bharti V, Zhao X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 1998;280:2101–2104.
62.
Pelrine R, Kornbluh R, Pei QB, Joseph J. High-speed electrically actuated elastomers with strain greater than 100%. Science 2000;287:836–839.
63.
Bar-Cohen Y, ed. Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges. Bellingham, WA: SPIE Press, 2004, p. 816.
64.
Bar-Cohen Y, ed. WorldWide ElectroActive Polymers, http://eap.jpl.nasa.gov/, Vol 12. 2010.
65.
Warren JP, Bobich LR, Santello M, Sweeney JD, Tillery SIH. Receptive field characteristics under electrotactile stimulation of the fingertip. IEEE Trans Neural Syst Rehab Eng 2008;16:410–415.
66.
Ying M, Bonifas AP, Lu NS, Su YW, Li R, Cheng HY, et al. Silicon nanomembranes for fingertip electronics. Nanotechnology 2012;23:344004.
67.
Webster JG. Medical Instrumentation: Application and Design. New York: Wiley, 2009.
68.
Zang JF, Ryu S, Pugno N, Wang QM, Tu Q, Buehler MJ, Zhao XH. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat Mater 2013;12:321–325.
69.
Osada Y, Okuzaki H, Hori H. A polymer gel with electrically driven motility. Nature 1992;355:242–244.
70.
Hu ZB, Zhang XM, Li Y. Synthesis and application of modulated polymer gels. Science 1995;269:525–527.
71.
Techawanitchai P, Ebara M, Idota N, Asoh TA, Kikuchi A, Aoyagi T. Photo-switchable control of pH-responsive actuators via pH jump reaction. Soft Matter 2012;8:2844–2851.
72.
Yu CJ, Duan Z, Yuan PX, Li YH, Su YW, Zhang X, et al. Electronically programmable, reversible shape change in two- and three-dimensional hydrogel structures. Adv Mater 2013;25:1541–1546.
73.
Lehmann W, Skupin H, Tolksdorf C, Gebhard E, Zentel R, Kruger P, et al. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 2001;410:447–450.
74.
Liu C, Qin H, Mather PT. Review of progress in shape-memory polymers. J Mater Chem 2007;17:1543–1558.
75.
Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, et al. Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci USA 2007;104:13574–13577.
76.
Scrosati B. Nanomaterials—paper powers battery breakthrough. Nat Nanotechnol 2007;2:598–599.
77.
Hu LB, Choi JW, Yang Y, Jeong S, La Mantia F, Cui LF, Cui Y. Highly conductive paper for energy-storage devices. Proc Natl Acad Sci USA 2009;106:21490–21494.
78.
Hu LB, Wu H, La Mantia F, Yang YA, Cui Y. Thin, flexible secondary Li-ion paper batteries. ACS Nano 2010;4:5843–5848.
79.
Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 2007;6:497–500.
80.
Xu S, Qin Y, Xu C, Wei YG, Yang RS, Wang ZL. Self-powered nanowire devices. Nat Nanotechnol 2010;5:366–373.
81.
Wang SH, Lin L, Wang ZL. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett 2012;12:6339–6346.
82.
Gaikwad AM, Zamarayeva AM, Rousseau J, Chu HW, Derin I, Steingart DA. Highly stretchable alkaline batteries based on an embedded conductive fabric. Adv Mater 2012;24:5071–5076.
83.
Davis S, Caldwell DG ed. The Biomimetic Design of a Robot Primate Using Pneumatic Muscle Actuators. Karlsruhe, Germany: John Wiley Sons, 2001, pp. 197–204.
84.
Thompson BC, Frechet JM. Polymer-fullerene composite solar cells. Angew Chem Int Ed Engl 2008;47:58–77.
85.
Yang R, Qin Y, Dai L, Wang ZL. Power generation with laterally packaged piezoelectric fine wires. Nat Nanotechnol 2009;4:34–39.
86.
Service RF. Nanogenerators tap waste energy to power ultrasmall electronics. Science 2010;328:304–305.
87.
Qi Y, Kim J, Nguyen TD, Lisko B, Purohit PK, McAlpine MC. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett 2011;11:1331–1336.
88.
Calvert P. Piezoelectric polyvinylidene fluoride. Nature 1975;256:694–694.
89.
Nguyen TD, Mao S, Yeh YW, Purohit PK, McAlpine MC. Nanoscale flexoelectricity. Adv Mater 2013;25:946–974.
90.
Ma T, Wang Y, Tang R, Yu H, Jiang H. Pre-patterned ZnO nanoribbons on soft substrates for stretchable energy harvesting applications. J Appl Phys 2013;113:204503.
Information & Authors
Information
Published In
Soft Robotics
Volume 1 • Issue Number 1 • March 2014
Pages: 53 - 62
Copyright
Copyright 2014, Mary Ann Liebert, Inc.
History
Published in print: March 2014
Published online: 17 July 2013
Topics
Authors
Author Disclosure Statement
No competing financial interests exist.
Metrics & Citations
Metrics
Citations
Export Citation
Export citation
Select the format you want to export the citations of this publication.
View Options
Get Access
Access content
To read the fulltext, please use one of the options below to sign in or purchase access.⚠ Society Access
If you are a member of a society that has access to this content please log in via your society website and then return to this publication.