Review Article
No access
Published Online: 31 August 2011

Hair Follicle Regeneration in Skin Grafts: Current Concepts and Future Perspectives

Publication: Tissue Engineering Part B: Reviews
Volume 18, Issue Number 1

Abstract

The repair and management of full-thickness skin defects resulting from burns and chronic wounds remain a significant unmet clinical challenge. For those skin defects exceeding 50%–60% of total body surface area, it is impractical to treat with autologous skin transplants because of the shortage of donor sites. The possibility of using tissue-engineered skin grafts for full-thickness wound repair is a promising approach. The primary goal of tissue-engineered skin grafts is to restore lost barrier function, but regeneration of appendages, such as hair follicles, has to be yet achieved. The successful regeneration of hair follicles in immunodeficient mice suggests that creating human hair follicles in tissue-engineered skin grafts is feasible. However, many limitations still need to be explored, particularly enriching isolated cells with trichogenic capacity, maintaining this ability during processing, and providing the cells with proper environmental cues. Current advances in hair follicle regeneration, in vitro and in vivo, are concisely summarized in this report, and key requirements to bioengineer a hair follicle are proposed, with emphasis on a three-dimensional approach.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Loss M.Wedler V.Künzi W.Meuli-Simmen C.Meyer V.E. Artificial skin, split-thickness autograft and cultured autologous keratinocytes combined to treat a severe burn injury of 93% of TBSABurns266442000. 1. Loss, M., Wedler, V., Künzi, W., Meuli-Simmen, C., and Meyer, V.E. Artificial skin, split-thickness autograft and cultured autologous keratinocytes combined to treat a severe burn injury of 93% of TBSA. Burns 26, 644, 2000.
2.
Böttcher-Haberzeth S.Biedermann T.Reichmann E. Tissue engineering of skinBurns364502010. 2. Böttcher-Haberzeth, S., Biedermann, T., and Reichmann, E. Tissue engineering of skin. Burns 36, 450, 2010.
3.
Aarabi S.Longaker M.T.Gurtner G.C. Hypertrophic scar formation following burns and trauma: new approaches to treatmentPLoS Med42342007. 3. Aarabi, S., Longaker, M.T., and Gurtner, G.C. Hypertrophic scar formation following burns and trauma: new approaches to treatment. PLoS Med 4, 234, 2007.
4.
Berman B.Viera M.H.Amini S.Huo R.Jones I.S. Prevention and management of hypertrophic scars and keloids after burns in childrenJ Craniofac Surg199892008. 4. Berman, B., Viera, M.H., Amini, S., Huo, R., and Jones, I.S. Prevention and management of hypertrophic scars and keloids after burns in children. J Craniofac Surg 19, 989, 2008.
5.
Rheinwald J.G.Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinising colonies from single cellsCell63311975. 5. Rheinwald, J.G., and Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinising colonies from single cells. Cell 6, 331, 1975.
6.
Metcalfe A.D.Ferguson M.W. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regenerationJ R Soc Interface44132007. 6. Metcalfe, A.D., and Ferguson, M.W. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 4, 413, 2007.
7.
Yang C.C.Cotsarelis G. Review of hair follicle dermal cellsJ Dermatol Sci5722010. 7. Yang, C.C., and Cotsarelis, G. Review of hair follicle dermal cells. J Dermatol Sci 57, 2, 2010.
8.
Martin P. Wound healing-Aiming for perfect skin regenerationScience276751997. 8. Martin, P. Wound healing-Aiming for perfect skin regeneration. Science 276, 75, 1997.
9.
Liu C.Xia Z.Czernuszka J.T. Design and development of three-dimensional scaffolds for tissue engineeringChem Eng Res Des8510512007. 9. Liu, C., Xia, Z., and Czernuszka, J.T. Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Des 85, 1051, 2007.
10.
Paus R.Foitzik K. In search of the “hair cycle clock”: A guided tourDifferentiation724892004. 10. Paus, R., and Foitzik, K. In search of the “hair cycle clock”: A guided tour. Differentiation 72, 489, 2004.
11.
Chuong C.M.Cotsarelis G.Stenn K. Defining hair follicles in the age of stem cell bioengineeringJ Invest Dermatol12720982007. 11. Chuong, C.M., Cotsarelis, G., and Stenn, K. Defining hair follicles in the age of stem cell bioengineering. J Invest Dermatol 127, 2098, 2007.
12.
Verma V.Verma P.Ray P.Ray A.R. Preparation of scaffold from human hair proteins for tissue-engineering applicationsBiomed Mater20250072008. 12. Verma, V., Verma, P., Ray, P., and Ray, A.R. Preparation of scaffold from human hair proteins for tissue-engineering applications. Biomed Mater 2, 025007, 2008.
13.
Otberg N.Richter H. Variations of hair follicle size and distribution in different body sitesJ Invest Dermatol122142004. 13. Otberg, N., and Richter, H. Variations of hair follicle size and distribution in different body sites. J Invest Dermatol 122, 14, 2004.
14.
Krause K.Foitzik K. Biology of the hair follicle: the basicSemin Cutan Med Surg2522006. 14. Krause, K., and Foitzik, K. Biology of the hair follicle: the basic. Semin Cutan Med Surg 25, 2, 2006.
15.
Stenn K.S.Paus R. Controls of hair follicle cyclingPhysiol Rev814492001. 15. Stenn, K.S., and Paus, R. Controls of hair follicle cycling. Physiol Rev 81, 449, 2001.
16.
Jahoda C.A.Reynolds A.J. Dermal-epidermal interactions. Adult follicle-derived cell populations and hair growthDermatol Clin145731996. 16. Jahoda, C.A., and Reynolds, A.J. Dermal-epidermal interactions. Adult follicle-derived cell populations and hair growth. Dermatol Clin 14, 573, 1996.
17.
Blanpain C.Lowry W.E.Geoghegan A. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell nicheCell1186352004. 17. Blanpain, C., Lowry, W.E., and Geoghegan, A. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635, 2004.
18.
Oliver R.F. Histologic study of whisker regeneration in the hooded ratJ Embryol Exp Morphol162311966. 18. Oliver, R.F. Histologic study of whisker regeneration in the hooded rat. J Embryol Exp Morphol 16, 231, 1966.
19.
Schneider M.R.Schmidt-Ullrich R.Paus R. The hair follicle as a dynamic miniorganCurr Biol191322009. 19. Schneider, M.R., Schmidt-Ullrich, R., and Paus, R. The hair follicle as a dynamic miniorgan. Curr Biol 19, 132, 2009.
20.
Jahoda C.A. Cell movement in the hair follicle dermis—more than a two-way street?J Invest Dermatol12112672003. 20. Jahoda, C.A. Cell movement in the hair follicle dermis—more than a two-way street? J Invest Dermatol 121, 1267, 2003.
21.
Amoh Y.Li L.Katsuoka K.Hoffman R.M. Multipotent nestin-positive keratinnegative hair follicle bulge stem cells can form neuronsProc Natl Acad Sci U S A10255302005. 21. Amoh, Y., Li, L., Katsuoka, K., and Hoffman, R.M. Multipotent nestin-positive keratinnegative hair follicle bulge stem cells can form neurons. Proc Natl Acad Sci U S A 102, 5530, 2005.
22.
Foitzik K.Lindner G.Mueller-Roever S. Control of murine hair follicle regression (catagen) by TGF-beta1 in vivoFASEB J147522000. 22. Foitzik, K., Lindner, G., and Mueller-Roever, S. Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo. FASEB J 14, 752, 2000.
23.
Mayer J.A.Chuong C.M.Widelitz R. Rooster feathering, androgenetic alopecia, and hormone-dependent tumor growth: what is in common?Differentiation724742004. 23. Mayer, J.A., Chuong, C.M., and Widelitz, R. Rooster feathering, androgenetic alopecia, and hormone-dependent tumor growth: what is in common? Differentiation 72, 474, 2004.
24.
Zheng Y.Nace A.Chen W. Mature Hair Follicles Generated from Dissociated Cells: A Universal Mechanism of FolliculoneogenesisDev Dyn23926192010. 24. Zheng, Y., Nace, A., and Chen, W. Mature Hair Follicles Generated from Dissociated Cells: A Universal Mechanism of Folliculoneogenesis. Dev Dyn 239, 2619, 2010.
25.
Zheng Y.Du X.Wang W.Boucher M.Parimoo S.Stenn K. Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cellsJ Invest Dermatol1248672005. 25. Zheng, Y., Du, X., Wang, W., Boucher, M., Parimoo, S., and Stenn K. Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells. J Invest Dermatol 124, 867, 2005.
26.
Stenn K.S.Cotsarelis G. Bioengineering the hair follicle: fringe benefits of stem cell technologyCurr Opin Biotechnol1612006. 26. Stenn. K.S., and Cotsarelis, G. Bioengineering the hair follicle: fringe benefits of stem cell technology. Curr Opin Biotechnol 16, 1, 2006.
27.
Colin A. B. Smooth muscle α-actin is a marker for hair follicle dermis in vivo and in vitroCell Science996271991. 27. Colin, A. B. Smooth muscle α-actin is a marker for hair follicle dermis in vivo and in vitro. Cell Science 99, 627, 1991.
28.
Wu J.J.Zhu T.Y.Liu R.Q.Mai YCheng BLu Z.FZhong B.YTang S.Q. Hair follicle reformation induced by dermal papilla cells from human scalp skinArch Dermatol Res2981832006. 28. Wu, J.J., Zhu, T.Y., Liu, R.Q., Mai Y., Cheng B., Lu Z.F., Zhong B.Y., and Tang S.Q. Hair follicle reformation induced by dermal papilla cells from human scalp skin. Arch Dermatol Res 298, 183, 2006.
29.
Fernandes K.J.McKenzie I.A.Mill P.Smith K.M.Akhavan M.Barnabe-Heider F. A dermal niche for multipotent adult skin-derived precursor cellsNat Cell Biol610822004. 29. Fernandes, K.J., McKenzie, I.A., Mill, P., Smith, K.M., Akhavan, M., and Barnabe-Heider, F. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 6, 1082, 2004.
30.
Dry Driskell R.R.Giangreco A.Jensen K.B.Mulder K.W.Watt F.M. Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermisDevelopment13628152009. 30. Dry Driskell, R.R., Giangreco, A., Jensen, K.B., Mulder, K.W., and Watt, F.M. Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development 136, 2815, 2009.
31.
Supp D.M.Boyce S.T. Engineered skin substitutes: practices and potentialsClin Dermatol234032005. 31. Supp, D.M., and Boyce, S.T. Engineered skin substitutes: practices and potentials. Clin Dermatol 23, 403, 2005.
32.
Ito M.Liu Y.Yang Z.Nguyen J.Liang F.Morris R.J. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermisNat Med1113512005. 32. Ito, M., Liu, Y., Yang, Z., Nguyen, J., Liang, F., and Morris, R.J. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11, 1351, 2005.
33.
McElwee K.J.Kissling S. Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papillaJ Invest Dermatol12112672003. 33. McElwee, K.J., and Kissling, S. Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. J Invest Dermatol 121, 1267, 2003.
34.
Reynolds A.J.Jahoda C.A.B. Cultured dermal papilla cells induce follicle formation and hair growth by trans-differentiation of an adult epidermisDevelopment1155871992. 34. Reynolds, A.J., and Jahoda C.A.B. Cultured dermal papilla cells induce follicle formation and hair growth by trans-differentiation of an adult epidermis. Development 115, 587, 1992.
35.
Jahoda C.A.B.Oliver R.F. The growth of vibrissa dermal papilla cells in vitroBr J Dermatol1056231981. 35. Jahoda, C.A.B., and Oliver, R.F. The growth of vibrissa dermal papilla cells in vitro. Br J Dermatol 105, 623, 1981.
36.
Warren R.Chestnut M.H.Wong T.K.Otte T.E.Lanners K.M.Meili M.L. Improved method for the isolation and cultivation of human scalp dermal papilla cellsJ Invest Dermatol986931992. 36. Warren, R., Chestnut, M.H., Wong, T.K., Otte, T.E., Lanners, K.M., and Meili, M.L. Improved method for the isolation and cultivation of human scalp dermal papilla cells. J Invest Dermatol 98, 693, 1992.
37.
Chiu H.C.Chang C.H.Wu Y.C. An efficient method for isolation of hair papilla and follicle epithelium from human scalp specimensBr J Dermatol1293501993. 37. Chiu, H.C., Chang, C.H., and Wu, Y.C. An efficient method for isolation of hair papilla and follicle epithelium from human scalp specimens. Br J Dermatol 129, 350, 1993.
38.
Wu J.J.Liu R.Q.Lu Y.G.Zhu T.Y.Cheng B.Men X. Enzyme digestion to isolate and culture human scalp dermal papilla cells: a more efficient methodArch Dermatol Res297602005. 38. Wu, J.J., Liu, R.Q., Lu, Y.G., Zhu, T.Y., Cheng, B., and Men, X. Enzyme digestion to isolate and culture human scalp dermal papilla cells: a more efficient method. Arch Dermatol Res 297, 60, 2005.
39.
Li Y.Li G.Q.Lin C.M.Cai X.N. One-step collagenase I treatment: an efficient way for isolation and cultivation of human scalp dermal papilla cellsJ Dermatol Sci37582005. 39. Li, Y., Li, G.Q., Lin, C.M., and Cai, X.N. One-step collagenase I treatment: an efficient way for isolation and cultivation of human scalp dermal papilla cells. J Dermatol Sci 37, 58, 2005.
40.
Osada A.Iwabuchi T.Kishimoto J.Hamazaki T.S.Okochi H. Long-term culture of mouse vibrissa dermal papilla cells and de novo hair follicle inductionTissue Eng139752007. 40. Osada, A., Iwabuchi, T., Kishimoto, J., Hamazaki, T.S., and Okochi, H. Long-term culture of mouse vibrissa dermal papilla cells and de novo hair follicle induction. Tissue Eng 13, 975, 2007.
41.
Jahoda C.A.Horne K.A.Oliver R.F. Induction of hair growth by implantation of cultured dermal papilla cellsNature3115601984. 41. Jahoda, C.A., Horne, K.A., and Oliver, R.F. Induction of hair growth by implantation of cultured dermal papilla cells. Nature 311, 560, 1984.
42.
Osada A.Kobayashi K.Masui S.Hamazaki T.S.Yasuda K.Okochi H. Cloned cells from the murine dermal papilla have hair-inducing abilityJ Dermatol Sci541292009. 42. Osada, A., Kobayashi, K., Masui, S., Hamazaki, T.S., Yasuda, K., and Okochi, H. Cloned cells from the murine dermal papilla have hair-inducing ability. J Dermatol Sci 54, 129, 2009.
43.
Inamatsu M.Matsuzaki T.Iwanari H.Yoshizato K. Establishment of rat dermal papilla cell lines that sustain the potency to induce hair follicles from afollicular skinJ Invest Dermatol1117671998. 43. Inamatsu, M., Matsuzaki, T., Iwanari, H., and Yoshizato, K. Establishment of rat dermal papilla cell lines that sustain the potency to induce hair follicles from afollicular skin. J Invest Dermatol 111, 767, 1998.
44.
Stenn K.S.Paus R. Controls of hair follicle cyclingPhysiol Rev8112001. 44. Stenn, K.S., and Paus, R. Controls of hair follicle cycling. Physiol Rev 81, 1, 2001.
45.
Cohen J. The transplantation of individual rat and guinea-pig whisker papillaeJ Embryol Exp Morphol91171961. 45. Cohen, J. The transplantation of individual rat and guinea-pig whisker papillae. J Embryol Exp Morphol 9, 117, 1961.
46.
Oliver R.F. Ectopic regeneration of whiskers in the hooded rat from implanted lengths of vibrissa follicle wallJ Embryol Exp Morphol17271967. 46. Oliver, R.F. Ectopic regeneration of whiskers in the hooded rat from implanted lengths of vibrissa follicle wall. J Embryol Exp Morphol 17, 27, 1967.
47.
Limat A.Hunzider T.Breitkreutz D.Fusenig N.E.Braathen L.R. Organotypic cocultures as model to study cell–cell and cell–matrix interactions of human hair follicle cellsSkin Pharm7471994. 47. Limat, A., Hunzider, T., Breitkreutz, D., Fusenig, N.E., and Braathen, L.R. Organotypic cocultures as model to study cell–cell and cell–matrix interactions of human hair follicle cells. Skin Pharm 7, 47, 1994.
48.
Ehama R.Ishimatsu-Tsuji Y.Iriyama S.Ideta R.Soma T.Yano K. Hair follicle regeneration using grafted rodent and human cellsJ Invest Dermatol12721062007. 48. Ehama, R., Ishimatsu-Tsuji, Y., Iriyama, S., Ideta, R., Soma, T., and Yano, K. Hair follicle regeneration using grafted rodent and human cells. J Invest Dermatol 127, 2106, 2007.
49.
Morris R.J.Liu Y.Marles L.Yang Z.Trempus C.Li S. Capturing and profiling adult hair follicle stem cellsNat Biotechnol224112004. 49. Morris, R.J., Liu, Y., Marles, L., Yang, Z., Trempus, C., and Li, S. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22, 411, 2004.
50.
Lichti U.Anders J.Yuspa S.H. Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient miceNat Protoc37992008. 50. Lichti, U., Anders, J., and Yuspa, S.H. Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nat Protoc 3, 799, 2008.
51.
Kishimoto J.Ehama R. Selective activation of the versican promoter by epithelial-mesenchymal interaction during hair follicle developmentProc Natl Acad Aci U S A9673361999. 51. Kishimoto, J., and Ehama, R. Selective activation of the versican promoter by epithelial-mesenchymal interaction during hair follicle development. Proc Natl Acad Aci U S A 96, 7336, 1999.
52.
Jahoda C.A.B.Reynolds A.J. Dermal-epidermal interactions–follicle-derived cell populations in the study of hair growth mechanismsJ Invest Dermatol101331993. 52. Jahoda, C.A.B., and Reynolds, A.J. Dermal-epidermal interactions–follicle-derived cell populations in the study of hair growth mechanisms. J Invest Dermatol 101, 33, 1993.
53.
Havlickova B.Biro T.Mescalchin A.Arenberger P.Paus R. Towards optimization of an organotypic assay system that imitates human hair follicle-like epithelial–mesenchymal interactionsBr J Dermatol1517532004. 53. Havlickova, B., Biro, T., Mescalchin, A., Arenberger, P., and Paus, R. Towards optimization of an organotypic assay system that imitates human hair follicle-like epithelial–mesenchymal interactions. Br J Dermatol 151, 753, 2004.
54.
Limat A.Breitkreutz D.Hunziker T.Klein C.E.Braathen L.R. Outer root sheath (ORS) cells organize into epidermoid cyst-like spheroids when culture inside matrigel: a light-microscopic and immunohistological comparison between human ORS cells and interfollicular keratinocytesCell Tissue Res2751691994. 54. Limat, A., Breitkreutz, D., Hunziker, T., Klein, C.E., and Braathen, L.R. Outer root sheath (ORS) cells organize into epidermoid cyst-like spheroids when culture inside matrigel: a light-microscopic and immunohistological comparison between human ORS cells and interfollicular keratinocytes. Cell Tissue Res 275, 169, 1994.
55.
Qiao J.Turetsky A.Kemp P.Teumer J. Hair morphogenesis in vitro: formation of hair structures suitable for implantationRegen Med36832008. 55. Qiao, J., Turetsky, A., Kemp, P., and Teumer, J. Hair morphogenesis in vitro: formation of hair structures suitable for implantation. Regen Med 3, 683, 2008.
56.
MacNeil S. Biomaterials for tissue engineering of skinMaterials Today1152008. 56. MacNeil, S. Biomaterials for tissue engineering of skin. Materials Today 11, 5, 2008.
57.
Uebersax L.Hagenmuller H.Hofmann S.Gruenblatt E.Muller R.Meinel L. Effect of scaffold design on bone morphology in vitroTissue Eng1234172006. 57. Uebersax, L., Hagenmuller, H., Hofmann, S., Gruenblatt, E., Muller, R., and Meinel, L. Effect of scaffold design on bone morphology in vitro. Tissue Eng 12, 3417, 2006.
58.
Kanani A.G.H.Bahrami S.H. Review on electrospun nanofibers scaffold and biomedical applicationsTrends Biomater Artif Organs24932010. 58. Kanani, A.G.H., and Bahrami, S.H. Review on electrospun nanofibers scaffold and biomedical applications. Trends Biomater Artif Organs 24, 93, 2010.
59.
Hromadka M.Collins J.B. Nanofiber applications for burn careJ Burn Care Res296952008. 59. Hromadka, M., and Collins, J.B. Nanofiber applications for burn care. J Burn Care Res 29, 695, 2008.
60.
Zhong S.P.Zhang Y.Z.Lim C.T. Tissue scaffolds for skin wound healing and dermal reconstructionNanobiotechnol25102010. 60. Zhong, S.P., Zhang, Y.Z., and Lim, C.T. Tissue scaffolds for skin wound healing and dermal reconstruction. Nanobiotechnol 2, 510, 2010.
61.
Powell H.M.Boyce S.T. Engineered human skin fabricated using electrospun collagen-PCL blends: morphogenesis and mechanical propertiesTissue Eng Part A821772009. 61. Powell, H.M., and Boyce, S.T. Engineered human skin fabricated using electrospun collagen-PCL blends: morphogenesis and mechanical properties. Tissue Eng Part A 8, 2177, 2009.
62.
Yang X.Shah M.E.Wang H. Nanofiber enabled layer-by-layer approach toward three-dimensional tissue formationTissue Eng Part A159452009. 62. Yang, X., Shah, M.E., and Wang, H. Nanofiber enabled layer-by-layer approach toward three-dimensional tissue formation. Tissue Eng Part A 15, 945, 2009.
63.
Golembo M. Controlled release of novel FGF variants for bone fracture healingEur Cells Mater5642003. 63. Golembo, M. Controlled release of novel FGF variants for bone fracture healing. Eur Cells Mater 5, 64, 2003.
64.
Beaudoin G.M. IIISisk J.M.Coulombe P.A.Thompson C.C. Hairless triggers reaction of hair growth by promoting Wnt signalingProc Natl Acad Sci U S A102146532005. 64. Beaudoin, G.M., III, Sisk, J.M., Coulombe, P.A., and Thompson, C.C. Hairless triggers reaction of hair growth by promoting Wnt signaling. Proc Natl Acad Sci U S A 102, 14653, 2005.
65.
St-Jacques B.Dassule H.R.Karavanova I.Botchkarev V.A.Li J.Danielian P.S.McMahon J.A.Lewis P.M.Paus R.McMahon A.P. Sonic hedgehog signaling is essential for hair developmentCurr Biol810581998. 65. St-Jacques, B., Dassule, H.R., Karavanova, I., Botchkarev, V.A., Li, J., Danielian, P.S., McMahon, J.A., Lewis, P.M., Paus, R., and McMahon, A.P. Sonic hedgehog signaling is essential for hair development. Curr Biol 8, 1058, 1998.
66.
Chiang C.Swan R.Z.Grachtchouk M.Bolinger M.Litingtung Y.Robertson E.K.Cooper M.K.Gaffield W.Westphal H. Essential role for Sonic hedgehog during hair follicle morphogenesisDev Biol20511999. 66. Chiang, C., Swan, R.Z., Grachtchouk, M., Bolinger, M., Litingtung, Y., Robertson, E.K., Cooper, M.K., Gaffield, W., and Westphal, H. Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev Biol 205, 1, 1999.
67.
Ellis T.Smyth I.Riley E.Bowles J.Adolphe C.Rothnagel J.A.Wicking C. Overexpression of sonic hedgehog suppresses embryonic hair follicle morphogenesisDev Biol2632032003. 67. Ellis, T., Smyth, I., Riley, E., Bowles, J., Adolphe, C., Rothnagel, J.A., and Wicking, C. Overexpression of sonic hedgehog suppresses embryonic hair follicle morphogenesis. Dev Biol 263, 203, 2003.
68.
Karlsson L.Bondjers C.Betsholtz C. Roles for PDGF-A and sonic hedgehog in development of mesenchymal components of the hair follicleDevelopment12626111999. 68. Karlsson, L., Bondjers, C., and Betsholtz, C. Roles for PDGF-A and sonic hedgehog in development of mesenchymal components of the hair follicle. Development 126, 2611, 1999.
69.
Rubin J.S.Chan A.M.Bottaro D.P.Cech A.C. A broad-spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factorProc Natl Acad Sci, USA884151991. 69. Rubin, J.S., Chan, A.M., Bottaro, D.P., and Cech, A.C. A broad-spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factor. Proc Natl Acad Sci, USA 88, 415, 1991.
70.
Weidner K.M.Behrens J.Vandekerckhove J.Birchmeier W. Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cellsJ Cell Biol11120971990. 70. Weidner, K.M., Behrens, J., Vandekerckhove, J., and Birchmeier, W. Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J Cell Biol 111, 2097, 1990.
71.
Montesano R.Matsumoto K.Nakamura T.Orci L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factorCell679011991. 71. Montesano, R., Matsumoto, K., Nakamura, T., Orci, L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67, 901, 1991.
72.
Mitsui S.Ochiai A.Hotta M.Tsuboi R.Ogawa H. Genes for a range of growth factors and cyclin-dependent kinase inhibitors are expressed by isolated human hair folliclesBr J Dermatol1376931997. 72. Mitsui, S., Ochiai, A., Hotta, M., Tsuboi, R., and Ogawa, H. Genes for a range of growth factors and cyclin-dependent kinase inhibitors are expressed by isolated human hair follicles. Br J Dermatol 137, 693, 1997.
73.
Jindo T.Tsuboi R.Takamori K.Ogawa H. Local injection of hepatocyte growth factor/scatter factor (HGF/SF) alters cyclic growth of murine hair folliclesJ Invest Dermatol1103381998. 73. Jindo, T., Tsuboi, R., Takamori, K., and Ogawa, H. Local injection of hepatocyte growth factor/scatter factor (HGF/SF) alters cyclic growth of murine hair follicles, J Invest Dermatol 110, 338, 1998.
74.
Jindo T.Tsuboi R.Imai R.Ogawa H. The effect hepatocyte growth factor: scatter factor on human hair follicle growthJ Dermatol Sci102291995. 74. Jindo, T., Tsuboi, R., Imai, R., and Ogawa H. The effect hepatocyte growth factor: scatter factor on human hair follicle growth. J Dermatol Sci 10, 229, 1995.
75.
Shimaoka S.Tsuboi R.Jindo T.Imai R.Ogawa H. Hepatocyte growth factor: scatter factor expressed in follicular papilla cells stimulates human hair growth in vitroJ Cell Physiol1653331995. 75. Shimaoka, S., Tsuboi, R., Jindo, T., Imai, R., and Ogawa, H. Hepatocyte growth factor: scatter factor expressed in follicular papilla cells stimulates human hair growth in vitro. J Cell Physiol 165, 333, 1995.
76.
Jindo T.Tsuboi R.Takamori K.Ogawa H. Local injection of hepatocyte growth factor:scatter factor (HGF:SF) alters cyclic growth of murine hair folliclesJ Invest Dermatol1103381998. 76. Jindo, T., Tsuboi, R., Takamori, K., and Ogawa, H. Local injection of hepatocyte growth factor:scatter factor (HGF:SF) alters cyclic growth of murine hair follicles. J Invest Dermatol 110, 338, 1998.
77.
Sung Y.K.Hwang S.Y.Cha S.Y.Kim J.C. The hair growth promoting effect of ascorbic acid 2-phosphate, a long-acting Vitamin C derivativeJ Dermatol Sci411502006. 77. Sung, Y.K., Hwang, S.Y., Cha, S.Y., and Kim, J.C. The hair growth promoting effect of ascorbic acid 2-phosphate, a long-acting Vitamin C derivative. J Dermatol Sci 41, 150, 2006.
78.
Han J.H.Kwon O.S.Chung J.H.Kim K.H. Effect of minoxidil on proliferation and apoptosis in dermal papilla cells of human hair follicleJ Dermatol Sci34912004. 78. Han, J.H., Kwon, O.S., Chung, J.H., and Kim, K.H. Effect of minoxidil on proliferation and apoptosis in dermal papilla cells of human hair follicle. J Dermatol Sci 34, 91, 2004.
79.
Petiot A.Conti F.J.Grose R.Revest J.M.Hodivala-Dilke K.M.Dickson C. A crucial role for Fgfr2-IIIb signalling in epidermal development and hair follicle patterningDevelopment13054932003. 79. Petiot, A., Conti, F.J., Grose, R., Revest, J.M., Hodivala-Dilke, K.M., and Dickson, C. A crucial role for Fgfr2-IIIb signalling in epidermal development and hair follicle patterning. Development 130, 5493, 2003.
80.
Roh C.Tao Q.Lyle S. Dermal papilla-induced hair differentiation of adult epithelial stem cells from human skinPhysiol Genomics192072004. 80. Roh, C., Tao, Q., and Lyle, S. Dermal papilla-induced hair differentiation of adult epithelial stem cells from human skin. Physiol Genomics 19, 207, 2004.
81.
Cotsarelis G. Epithelial stem cells: a folliculocentric viewJ Invest Dermatol12614592006. 81. Cotsarelis, G. Epithelial stem cells: a folliculocentric view. J Invest Dermatol 126, 1459, 2006.
82.
Ito M.Liu Y.Yang Z.Nguyen J.Liang F.Morris R.J. Stem cells in the hair follicle bulge contribute to wound healing but not to homeostasis of the epidermisNat Med1113512005. 82. Ito, M., Liu, Y., Yang, Z., Nguyen, J., Liang, F., and Morris, R.J. Stem cells in the hair follicle bulge contribute to wound healing but not to homeostasis of the epidermis. Nat Med 11, 1351, 2005.
83.
Botchkarev V.A.Peters E.Botchkareva N.Maurer M.Paus R. Hair cycle- dependent changes in adrenergic skin innervation, and hair growth modulation by adrenergic drugsJ Invest Dermatol1138781999. 83. Botchkarev, V.A., Peters, E., Botchkareva, N., Maurer, M., and Paus, R. Hair cycle- dependent changes in adrenergic skin innervation, and hair growth modulation by adrenergic drugs. J Invest Dermatol 113, 878, 1999.

Information & Authors

Information

Published In

cover image Tissue Engineering Part B: Reviews
Tissue Engineering Part B: Reviews
Volume 18Issue Number 1February 2012
Pages: 15 - 23
PubMed: 21883016

History

Published in print: February 2012
Published ahead of print: 1 September 2011
Published online: 31 August 2011
Accepted: 5 July 2011
Received: 2 February 2011

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Seyed Babak Mahjour
Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey.
Fariborz Ghaffarpasand
Fariborz Ghaffarpasand–Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran.
Hongjun Wang
Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey.

Notes

Address correspondence to:Hongjun Wang, Ph.D.Department of Chemistry, Chemical Biology and Biomedical EngineeringStevens Institute of TechnologyMcLean Building Room 416Castle Point on HudsonHoboken, NJ 07030E-mail: [email protected]

Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top